IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p431-d1020191.html
   My bibliography  Save this article

First Law Comparison of a Forced-Circulation Solar Water Heating System with an Identical Thermosyphon

Author

Listed:
  • Evangelos I. Sakellariou

    (Department of Mechanical Engineering, University of West Attica, 250, Thivon & P. Ralli Str., Campus Ancient Olive Grove, 12244 Athens, Greece)

  • Petros J. Axaopoulos

    (Department of Mechanical Engineering, University of West Attica, 250, Thivon & P. Ralli Str., Campus Ancient Olive Grove, 12244 Athens, Greece)

  • Bill Vaneck Bot

    (Laboratory of Energy, Materials, Modelling and Methods, Higher National Polytechnic School, University of Douala, Douala P.O. Box 2701, Cameroon)

  • Kosmas A. Kavadias

    (Department of Mechanical Engineering, Laboratory of Soft Energy Applications & Environmental Protection, University of West Attica, 250, Thivon & P. Ralli Str., Campus Ancient Olive Grove, 12244 Athens, Greece)

Abstract

The main categories of solar water heating systems (SWHSs) are the thermosyphon and the forced circulation (FC). This paper presents an experiment carried out with the aim to compare the energy performance of the FC with a thermosyphon SHWS. Identical SWHSs were installed side by side at the University of West Attica in Athens, Greece. Domestic hot water load was applied to both systems via a microcontroller-based dispensing unit which mimics the demand profile. The trial period comprised the last two months of spring (April and May). For the first law assessment, two energy indicators were utilized: the solar fraction (SF) and the thermal efficiency of the system (η th ). On days with distinctive weather conditions, both systems obtained approximately equal SF and η th values, without a specific preference between the ambient conditions and the type of SWHS. Regarding a four-day nonstop operation, the FC overperformed the thermosyphon system at both energy indicators. Namely, for the FC and the thermosyphon SWHS, the SF was calculated to be 0.62 and 0.48, and the η th was 68.2% and 53.3%, respectively.

Suggested Citation

  • Evangelos I. Sakellariou & Petros J. Axaopoulos & Bill Vaneck Bot & Kosmas A. Kavadias, 2022. "First Law Comparison of a Forced-Circulation Solar Water Heating System with an Identical Thermosyphon," Energies, MDPI, vol. 16(1), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:431-:d:1020191
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/431/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/431/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chuawittayawuth, K. & Kumar, S., 2002. "Experimental investigation of temperature and flow distribution in a thermosyphon solar water heating system," Renewable Energy, Elsevier, vol. 26(3), pages 431-448.
    2. Ayompe, L.M. & Duffy, A. & Mc Keever, M. & Conlon, M. & McCormack, S.J., 2011. "Comparative field performance study of flat plate and heat pipe evacuated tube collectors (ETCs) for domestic water heating systems in a temperate climate," Energy, Elsevier, vol. 36(5), pages 3370-3378.
    3. Allouhi, A. & Benzakour Amine, M. & Buker, M.S. & Kousksou, T. & Jamil, A., 2019. "Forced-circulation solar water heating system using heat pipe-flat plate collectors: Energy and exergy analysis," Energy, Elsevier, vol. 180(C), pages 429-443.
    4. Alaaeddin, M.H. & Sapuan, S.M. & Zuhri, M.Y.M. & Zainudin, E.S. & AL- Oqla, Faris M., 2019. "Photovoltaic applications: Status and manufacturing prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 318-332.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Hong & Liu, Hongyuan & Li, Min, 2022. "Review on heat pipe based solar collectors: Classifications, performance evaluation and optimization, and effectiveness improvements," Energy, Elsevier, vol. 244(PA).
    2. Chen, Yuzhu & Hua, Huilian & Wang, Jun & Lund, Peter D., 2021. "Thermodynamic performance analysis and modified thermo-ecological cost optimization of a hybrid district heating system considering energy levels," Energy, Elsevier, vol. 224(C).
    3. Cruz-Peragon, F. & Palomar, J.M. & Casanova, P.J. & Dorado, M.P. & Manzano-Agugliaro, F., 2012. "Characterization of solar flat plate collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1709-1720.
    4. Hands, Stuart & Sethuvenkatraman, Subbu & Peristy, Mark & Rowe, Daniel & White, Stephen, 2016. "Performance analysis & energy benefits of a desiccant based solar assisted trigeneration system in a building," Renewable Energy, Elsevier, vol. 85(C), pages 865-879.
    5. Naghavi, M.S. & Ong, K.S. & Badruddin, I.A. & Mehrali, Mohammad & Metselaar, H.S.C., 2017. "Thermal performance of a compact design heat pipe solar collector with latent heat storage in charging/discharging modes," Energy, Elsevier, vol. 127(C), pages 101-115.
    6. Ersöz, Mustafa Ali, 2016. "Effects of different working fluid use on the energy and exergy performance for evacuated tube solar collector with thermosyphon heat pipe," Renewable Energy, Elsevier, vol. 96(PA), pages 244-256.
    7. Singh, Sukhmeet & Gill, R.S. & Hans, V.S. & Mittal, T.C., 2022. "Experimental performance and economic viability of evacuated tube solar collector assisted greenhouse dryer for sustainable development," Energy, Elsevier, vol. 241(C).
    8. Correa-Jullian, Camila & López Droguett, Enrique & Cardemil, José Miguel, 2020. "Operation scheduling in a solar thermal system: A reinforcement learning-based framework," Applied Energy, Elsevier, vol. 268(C).
    9. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    10. Liu, Zhijian & Liu, Yuanwei & He, Bao-Jie & Xu, Wei & Jin, Guangya & Zhang, Xutao, 2019. "Application and suitability analysis of the key technologies in nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 329-345.
    11. Juanicó, Luis E. & Di Lalla, Nicolás & González, Alejandro D., 2017. "Full thermal-hydraulic and solar modeling to study low-cost solar collectors based on a single long LDPE hose," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 187-195.
    12. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Yu, Jinghua & Xu, Xinhua & Su, Xiaosong, 2020. "Towards net zero energy building: The application potential and adaptability of photovoltaic-thermoelectric-battery wall system," Applied Energy, Elsevier, vol. 258(C).
    13. Gao, Datong & Zhong, Shuai & Ren, Xiao & Kwan, Trevor Hocksun & Pei, Gang, 2022. "The energetic, exergetic, and mechanical comparison of two structurally optimized non-concentrating solar collectors for intermediate temperature applications," Renewable Energy, Elsevier, vol. 184(C), pages 881-898.
    14. De Paulo, A.F. & Porto, G.S., 2023. "Unveiling the cooperation dynamics in the photovoltaic technologies’ development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    15. Wojcicki, David James, 2015. "The application of the Typical Day Concept in flat plate solar collector models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 968-974.
    16. Mateusz Pawłowski & Jerzy Gagan & Dariusz Butrymowicz, 2022. "Assessment of Efficiency of Heat Transportation in Indirect Propane Refrigeration System Equipped with Carbon Dioxide Circulation Loop," Sustainability, MDPI, vol. 14(16), pages 1-26, August.
    17. Dominika Matuszewska, 2024. "Solar Organic Rankine Cycle (ORC) Systems: A Review of Technologies, Parameters, and Applications," Energies, MDPI, vol. 17(20), pages 1-26, October.
    18. Kalogirou, S.A. & Agathokleous, R. & Barone, G. & Buonomano, A. & Forzano, C. & Palombo, A., 2019. "Development and validation of a new TRNSYS Type for thermosiphon flat-plate solar thermal collectors: energy and economic optimization for hot water production in different climates," Renewable Energy, Elsevier, vol. 136(C), pages 632-644.
    19. Jiwen Cen & Feng Li & Tingliang Li & Wenbo Huang & Juanwen Chen & Fangming Jiang, 2021. "Experimental Study of the Heat-Transfer Performance of an Extra-Long Gravity-Assisted Heat Pipe Aiming at Geothermal Heat Exploitation," Sustainability, MDPI, vol. 13(22), pages 1-16, November.
    20. Solhee Lee & Sang-Won Lee & Soohyun Bae & Jae-Keun Hwang & Wonkyu Lee & Dowon Pyun & Seok-Hyun Jeong & Kyunghwan Kim & Ji-Seong Hwang & Sujin Cho & Donghwan Kim & Yoonmook Kang & Hae-Seok Lee, 2023. "Perovskite Solar Cell on Stainless Steel Substrate over 10% Efficiency for Building-Integrated Photovoltaics," Energies, MDPI, vol. 16(24), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:431-:d:1020191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.