IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p250-d1015517.html
   My bibliography  Save this article

A Critical Investigation of Certificated Industrial Wood Pellet Combustion: Influence of Process Conditions on CO/CO 2 Emission

Author

Listed:
  • Bartosz Choiński

    (Department of Agri-Food Engineering and Environmental Management, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, St. Wiejska 45A, 15-351 Bialystok, Poland)

  • Ewa Szatyłowicz

    (Department of Technology in Environmental Engineering, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, St. Wiejska 45A, 15-351 Bialystok, Poland)

  • Izabela Zgłobicka

    (Department of Materials Engineering and Production, Faculty of Mechanical Engineering, Białystok University of Technology, St. Wiejska 45A, 15-351 Bialystok, Poland)

  • Magdalena Joka Ylidiz

    (Department of Agri-Food Engineering and Environmental Management, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, St. Wiejska 45A, 15-351 Bialystok, Poland)

Abstract

The pollutants emission into the atmosphere is largely related to human activity and health, whereas, of many factors, domestic heating systems greatly impact the emission rate. The measures taken to reduce the emission of harmful compounds to the atmosphere are slowly starting to bring the intended effects and a downward trend in emissions of such gases as carbon monoxide (CO), nitrogen oxides (NO x ) , and sulfur dioxide (SO 2 ) is noticeable. The conducted tests allowed the determination of the combustion characteristics of individual pellet types available on the European market. During the tests, pellets were supplied to a 25 kW fixed-bed boiler with a constant mass flow of 3 kg·h −1 , and the air-flow ratio was manipulated and presented in the form of the excess air coefficient λ (1.8–3.08). Pellets certificated with the ENPlus as A1 were found not meeting the requirements, mainly in the ash content, which negatively affected their combustion performance gradually and caused exceeded CO emissions up to 1000 mg·Nm −3 . Pellets of declared lower classes were more beneficial for combustion in terms of emission factors.

Suggested Citation

  • Bartosz Choiński & Ewa Szatyłowicz & Izabela Zgłobicka & Magdalena Joka Ylidiz, 2022. "A Critical Investigation of Certificated Industrial Wood Pellet Combustion: Influence of Process Conditions on CO/CO 2 Emission," Energies, MDPI, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:250-:d:1015517
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/250/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/250/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu-Ru Lee & Wen-Tien Tsai, 2022. "Overview of Biomass-to-Energy Supply and Promotion Policy in Taiwan," Energies, MDPI, vol. 15(18), pages 1-11, September.
    2. Roy, Murari Mohon & Corscadden, Kenny W., 2012. "An experimental study of combustion and emissions of biomass briquettes in a domestic wood stove," Applied Energy, Elsevier, vol. 99(C), pages 206-212.
    3. Kijo-Kleczkowska, Agnieszka & Szumera, Magdalena & Gnatowski, Adam & Sadkowski, Dominik, 2022. "Comparative thermal analysis of coal fuels, biomass, fly ash and polyamide," Energy, Elsevier, vol. 258(C).
    4. Vasiliki Kamperidou, 2022. "Quality Analysis of Commercially Available Wood Pellets and Correlations between Pellets Characteristics," Energies, MDPI, vol. 15(8), pages 1-20, April.
    5. Marcin Zbieć & Justyna Franc-Dąbrowska & Nina Drejerska, 2022. "Wood Waste Management in Europe through the Lens of the Circular Bioeconomy," Energies, MDPI, vol. 15(12), pages 1-9, June.
    6. Vicente, E.D. & Vicente, A.M. & Evtyugina, M. & Carvalho, R. & Tarelho, L.A.C. & Paniagua, S. & Nunes, T. & Otero, M. & Calvo, L.F. & Alves, C., 2019. "Emissions from residential pellet combustion of an invasive acacia species," Renewable Energy, Elsevier, vol. 140(C), pages 319-329.
    7. Vicente, E.D. & Vicente, A.M. & Evtyugina, M. & Tarelho, L.A.C. & Almeida, S.M. & Alves, C., 2020. "Emissions from residential combustion of certified and uncertified pellets," Renewable Energy, Elsevier, vol. 161(C), pages 1059-1071.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thiago Averaldo Bimestre & Fellipe Sartori Silva & Celso Eduardo Tuna & José Carlos dos Santos & João Andrade de Carvalho & Eliana Vieira Canettieri, 2023. "Physicochemical Characterization and Thermal Behavior of Different Wood Species from the Amazon Biome," Energies, MDPI, vol. 16(5), pages 1-10, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Estela D. Vicente & Márcio A. Duarte & Luís A. C. Tarelho & Célia A. Alves, 2022. "Efficiency of Emission Reduction Technologies for Residential Biomass Combustion Appliances: Electrostatic Precipitator and Catalyst," Energies, MDPI, vol. 15(11), pages 1-14, June.
    2. Duong, Van Minh & Flener, Ursula & Hrbek, Jitka & Hofbauer, Hermann, 2022. "Emission characteristics from the combustion of Acacia Mangium in the automatic feeding pellet stove," Renewable Energy, Elsevier, vol. 186(C), pages 183-194.
    3. Wang, Zhiwei & Lei, Tingzhou & Chang, Xia & Shi, Xinguang & Xiao, Ju & Li, Zaifeng & He, Xiaofeng & Zhu, Jinling & Yang, Shuhua, 2015. "Optimization of a biomass briquette fuel system based on grey relational analysis and analytic hierarchy process: A study using cornstalks in China," Applied Energy, Elsevier, vol. 157(C), pages 523-532.
    4. Li, Shiyuan & Xu, Mingxin & Jia, Lufei & Tan, Li & Lu, Qinggang, 2016. "Influence of operating parameters on N2O emission in O2/CO2 combustion with high oxygen concentration in circulating fluidized bed," Applied Energy, Elsevier, vol. 173(C), pages 197-209.
    5. Lim, Mook Tzeng & Phan, Anh & Roddy, Dermot & Harvey, Adam, 2015. "Technologies for measurement and mitigation of particulate emissions from domestic combustion of biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 574-584.
    6. Vlasopoulos, Antonis & Malinauskaite, Jurgita & Żabnieńska-Góra, Alina & Jouhara, Hussam, 2023. "Life cycle assessment of plastic waste and energy recovery," Energy, Elsevier, vol. 277(C).
    7. Lacrimioara Senila & Ioan Tenu & Petru Carlescu & Daniela Alexandra Scurtu & Eniko Kovacs & Marin Senila & Oana Cadar & Marius Roman & Diana Elena Dumitras & Cecilia Roman, 2022. "Characterization of Biobriquettes Produced from Vineyard Wastes as a Solid Biofuel Resource," Agriculture, MDPI, vol. 12(3), pages 1-13, February.
    8. Corscadden, Kenneth W. & Biggs, Jaclyn & Thomson, Allan, 2014. "An integrated on-farm production system: Agricultural briquettes for residential heating in Nova Scotia, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 394-402.
    9. Joanna Szyszlak-Bargłowicz & Jacek Wasilewski & Grzegorz Zając & Andrzej Kuranc & Adam Koniuszy & Małgorzata Hawrot-Paw, 2022. "Evaluation of Particulate Matter (PM) Emissions from Combustion of Selected Types of Rapeseed Biofuels," Energies, MDPI, vol. 16(1), pages 1-15, December.
    10. Gebrezgabher, Solomie & Amewu, S. & Njenga, M., 2018. "Adoption and economic impact of briquettes as cooking fuel: the case of women fish smokers in Ghana," Resource Recovery and Reuse Series H049000, International Water Management Institute.
    11. Kipngetich, P. & Kiplimo, R. & Tanui, J.K. & Chisale, P.C., 2022. "Optimization of combustion parameters of carbonized rice husk briquettes in a fixed bed using RSM technique," Renewable Energy, Elsevier, vol. 198(C), pages 61-74.
    12. Beatrice Vincenti & Enrico Paris & Monica Carnevale & Adriano Palma & Ettore Guerriero & Domenico Borello & Valerio Paolini & Francesco Gallucci, 2022. "Saccharides as Particulate Matter Tracers of Biomass Burning: A Review," IJERPH, MDPI, vol. 19(7), pages 1-20, April.
    13. Míguez, José Luis & Porteiro, Jacobo & Pérez-Orozco, Raquel & Patiño, David & Gómez, Miguel Ángel, 2020. "Biological systems for CCS: Patent review as a criterion for technological development," Applied Energy, Elsevier, vol. 257(C).
    14. Vicente, E.D. & Vicente, A.M. & Evtyugina, M. & Tarelho, L.A.C. & Almeida, S.M. & Alves, C., 2020. "Emissions from residential combustion of certified and uncertified pellets," Renewable Energy, Elsevier, vol. 161(C), pages 1059-1071.
    15. Ozgen, S. & Cernuschi, S. & Caserini, S., 2021. "An overview of nitrogen oxides emissions from biomass combustion for domestic heat production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Alessio Ilari & Ester Foppa Pedretti & Carmine De Francesco & Daniele Duca, 2021. "Pellet Production from Residual Biomass of Greenery Maintenance in a Small-Scale Company to Improve Sustainability," Resources, MDPI, vol. 10(12), pages 1-12, December.
    17. Wang, Zhiwei & Lei, Tingzhou & Yang, Miao & Li, Zaifeng & Qi, Tian & Xin, Xiaofei & He, Xiaofeng & Ajayebi, Atta & Yan, Xiaoyu, 2017. "Life cycle environmental impacts of cornstalk briquette fuel in China," Applied Energy, Elsevier, vol. 192(C), pages 83-94.
    18. Liu, Xiang & Chen, Meiqian & Wei, Yuanhang, 2016. "Assessment on oxygen enriched air co-combustion performance of biomass/bituminous coal," Renewable Energy, Elsevier, vol. 92(C), pages 428-436.
    19. König, Mario & Hartmann, Ingo & Varas-Concha, Felipe & Torres-Fuchslocher, Carlos & Hoferecht, Frank, 2021. "Effects of single and combined retrofit devices on the performance of wood stoves," Renewable Energy, Elsevier, vol. 171(C), pages 75-84.
    20. Anna Tsybina & Christoph Wünsch & Irina Glushankova & Anna Arduanova, 2023. "Development and Substantiation of Approaches to the Management of Sewage Sludge of Different Storage Periods," Energies, MDPI, vol. 16(15), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:250-:d:1015517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.