IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3115-d801223.html
   My bibliography  Save this article

A Novel Data-Driven Estimation Method for State-of-Charge Estimation of Li-Ion Batteries

Author

Listed:
  • Suwei Zhai

    (Electric Power Research Institute of China Southern Power Grid Yunnan Power Grid Co., Ltd., Kunming 650217, China)

  • Wenyun Li

    (Yunnan Power Dispatching Control Center of China Southern Power Grid, Kunming 650011, China)

  • Cheng Wang

    (College of IOT Engineering, Hohai University, Nanjing 210098, China)

  • Yundi Chu

    (College of IOT Engineering, Hohai University, Nanjing 210098, China)

Abstract

With the increasing proportion of Li-ion batteries in energy structures, studies on the estimation of the state of charge (SOC) of Li-ion batteries, which can effectively ensure the safety and stability of Li-ion batteries, have gained much attention. In this paper, a new data-driven method named the probabilistic threshold compensation fuzzy neural network (PTCFNN) is proposed to estimate the SOC of Li-ion batteries. Compared with other traditional methods that need to build complex battery models, the PTCFNN only needs data learning to obtain nonlinear mapping relationships inside Li-ion batteries. In order to avoid the local optimal value problem of traditional BP neural networks and the fixed reasoning mechanism of traditional fuzzy neural networks, the PTCFNN combines the advantages of a probabilistic fuzzy neural network and a compensation fuzzy neural network so as to improve the learning convergence speed and optimize the fuzzy reasoning mechanism. Finally, in order to verify the estimation performance of the PTCFNN, a 18650-20R Li-ion battery was used to carry out the estimation test. The results show that the mean absolute error and mean square error are very small under the conditions of a low-current test and dynamic-current test, and the overall estimation error is less than 1%, which further indicates that this method has good estimation ability.

Suggested Citation

  • Suwei Zhai & Wenyun Li & Cheng Wang & Yundi Chu, 2022. "A Novel Data-Driven Estimation Method for State-of-Charge Estimation of Li-Ion Batteries," Energies, MDPI, vol. 15(9), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3115-:d:801223
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3115/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3115/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hongyuan Yuan & Youjun Han & Yu Zhou & Zongke Chen & Juan Du & Hailong Pei, 2022. "State of Charge Dual Estimation of a Li-ion Battery Based on Variable Forgetting Factor Recursive Least Square and Multi-Innovation Unscented Kalman Filter Algorithm," Energies, MDPI, vol. 15(4), pages 1-22, February.
    2. Yinfeng Jiang & Wenxiang Song & Hao Zhu & Yun Zhu & Yongzhi Du & Huichun Yin, 2022. "Extended Rauch–Tung–Striebel Smoother for the State of Charge Estimation of Lithium-Ion Batteries Based on an Enhanced Circuit Model," Energies, MDPI, vol. 15(3), pages 1-17, January.
    3. Zheng, Fangdan & Xing, Yinjiao & Jiang, Jiuchun & Sun, Bingxiang & Kim, Jonghoon & Pecht, Michael, 2016. "Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 183(C), pages 513-525.
    4. Yang Guo & Ziguang Lu, 2022. "A Robust Algorithm for State-of-Charge Estimation under Model Uncertainty and Voltage Sensor Bias," Energies, MDPI, vol. 15(4), pages 1-18, February.
    5. Yan Cheng & Xuesen Zhang & Xiaoqiang Wang & Jianhua Li, 2022. "Battery State of Charge Estimation Based on Composite Multiscale Wavelet Transform," Energies, MDPI, vol. 15(6), pages 1-16, March.
    6. Xing, Yinjiao & He, Wei & Pecht, Michael & Tsui, Kwok Leung, 2014. "State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures," Applied Energy, Elsevier, vol. 113(C), pages 106-115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuanping Wu & Yu Liu & Tiannian Zhou & Shiran Cao, 2022. "A Multistage Current Charging Method for Energy Storage Device of Microgrid Considering Energy Consumption and Capacity of Lithium Battery," Energies, MDPI, vol. 15(13), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Daoming & Yu, Xiaoli & Wang, Chongming & Zhang, Cheng & Huang, Rui & Zhou, Quan & Amietszajew, Taz & Bhagat, Rohit, 2021. "State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator," Energy, Elsevier, vol. 214(C).
    2. Yang, Jufeng & Huang, Wenxin & Xia, Bing & Mi, Chris, 2019. "The improved open-circuit voltage characterization test using active polarization voltage reduction method," Applied Energy, Elsevier, vol. 237(C), pages 682-694.
    3. Ahmed, Mostafa Shaban & Raihan, Sheikh Arif & Balasingam, Balakumar, 2020. "A scaling approach for improved state of charge representation in rechargeable batteries," Applied Energy, Elsevier, vol. 267(C).
    4. Seo, Minhwan & Song, Youngbin & Kim, Jake & Paek, Sung Wook & Kim, Gi-Heon & Kim, Sang Woo, 2021. "Innovative lumped-battery model for state of charge estimation of lithium-ion batteries under various ambient temperatures," Energy, Elsevier, vol. 226(C).
    5. Lin, Cheng & Yu, Quanqing & Xiong, Rui & Wang, Le Yi, 2017. "A study on the impact of open circuit voltage tests on state of charge estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 205(C), pages 892-902.
    6. Xiong, Rui & Yu, Quanqing & Wang, Le Yi & Lin, Cheng, 2017. "A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter," Applied Energy, Elsevier, vol. 207(C), pages 346-353.
    7. Fan, Kesen & Wan, Yiming & Wang, Zhuo & Jiang, Kai, 2023. "Time-efficient identification of lithium-ion battery temperature-dependent OCV-SOC curve using multi-output Gaussian process," Energy, Elsevier, vol. 268(C).
    8. Kim, Minho & Chun, Huiyong & Kim, Jungsoo & Kim, Kwangrae & Yu, Jungwook & Kim, Taegyun & Han, Soohee, 2019. "Data-efficient parameter identification of electrochemical lithium-ion battery model using deep Bayesian harmony search," Applied Energy, Elsevier, vol. 254(C).
    9. Ruifeng Zhang & Bizhong Xia & Baohua Li & Libo Cao & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang, 2018. "State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles," Energies, MDPI, vol. 11(7), pages 1-36, July.
    10. Jie Xing & Peng Wu, 2021. "State of Charge Estimation of Lithium-Ion Battery Based on Improved Adaptive Unscented Kalman Filter," Sustainability, MDPI, vol. 13(9), pages 1-16, April.
    11. Kuo Yang & Yugui Tang & Zhen Zhang, 2021. "Parameter Identification and State-of-Charge Estimation for Lithium-Ion Batteries Using Separated Time Scales and Extended Kalman Filter," Energies, MDPI, vol. 14(4), pages 1-15, February.
    12. Xiao, Renxin & Hu, Yanwen & Jia, Xianguang & Chen, Guisheng, 2022. "A novel estimation of state of charge for the lithium-ion battery in electric vehicle without open circuit voltage experiment," Energy, Elsevier, vol. 243(C).
    13. Mengying Chen & Fengling Han & Long Shi & Yong Feng & Chen Xue & Weijie Gao & Jinzheng Xu, 2022. "Sliding Mode Observer for State-of-Charge Estimation Using Hysteresis-Based Li-Ion Battery Model," Energies, MDPI, vol. 15(7), pages 1-14, April.
    14. Fan, Guodong & Li, Xiaoyu & Zhang, Ruigang, 2021. "Global Sensitivity Analysis on Temperature-Dependent Parameters of A Reduced-Order Electrochemical Model And Robust State-of-Charge Estimation at Different Temperatures," Energy, Elsevier, vol. 223(C).
    15. Ruifeng Zhang & Bizhong Xia & Baohua Li & Libo Cao & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang & Mingwang Wang, 2018. "A Study on the Open Circuit Voltage and State of Charge Characterization of High Capacity Lithium-Ion Battery Under Different Temperature," Energies, MDPI, vol. 11(9), pages 1-17, September.
    16. Bian, Chong & Duan, Zhiyu & Hao, Yaqian & Yang, Shunkun & Feng, Junlan, 2024. "Exploring large language model for generic and robust state-of-charge estimation of Li-ion batteries: A mixed prompt learning method," Energy, Elsevier, vol. 302(C).
    17. Wang, Jianfeng & Zuo, Zhiwen & Wei, Yili & Jia, Yongkai & Chen, Bowei & Li, Yuhan & Yang, Na, 2024. "State of charge estimation of lithium-ion battery based on GA-LSTM and improved IAKF," Applied Energy, Elsevier, vol. 368(C).
    18. Zhang, Kai & Bai, Dongxin & Li, Yong & Song, Ke & Zheng, Bailin & Yang, Fuqian, 2024. "Robust state-of-charge estimator for lithium-ion batteries enabled by a physics-driven dual-stage attention mechanism," Applied Energy, Elsevier, vol. 359(C).
    19. Quanqing Yu & Changjiang Wan & Junfu Li & Lixin E & Xin Zhang & Yonghe Huang & Tao Liu, 2021. "An Open Circuit Voltage Model Fusion Method for State of Charge Estimation of Lithium-Ion Batteries," Energies, MDPI, vol. 14(7), pages 1-22, March.
    20. Gelareh Javid & Djaffar Ould Abdeslam & Michel Basset, 2021. "Adaptive Online State of Charge Estimation of EVs Lithium-Ion Batteries with Deep Recurrent Neural Networks," Energies, MDPI, vol. 14(3), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3115-:d:801223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.