IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3071-d799844.html
   My bibliography  Save this article

Comprehensive and Integrated Impact Assessment Framework for Development Policies Evaluation: Definition and Application to Kenyan Coffee Sector

Author

Listed:
  • Nicolò Golinucci

    (Fondazione Eni Enrico Mattei (FEEM), Corso Magenta, 63, 20123 Milan, Italy
    Department of Energy, Politecnico di Milano, Via Lambruschini, 4, 20156 Milan, Italy)

  • Nicolò Stevanato

    (Fondazione Eni Enrico Mattei (FEEM), Corso Magenta, 63, 20123 Milan, Italy
    Department of Energy, Politecnico di Milano, Via Lambruschini, 4, 20156 Milan, Italy)

  • Negar Namazifard

    (Department of Energy, Politecnico di Milano, Via Lambruschini, 4, 20156 Milan, Italy)

  • Mohammad Amin Tahavori

    (Department of Energy, Politecnico di Milano, Via Lambruschini, 4, 20156 Milan, Italy)

  • Lamya Adil Sulliman Hussain

    (Independent Researcher, 20100 Milan, Italy)

  • Benedetta Camilli

    (Independent Researcher, 20100 Milan, Italy)

  • Federica Inzoli

    (Falck Renewables, Via Alberto Falck, 4, 20099 Milan, Italy)

  • Matteo Vincenzo Rocco

    (Department of Energy, Politecnico di Milano, Via Lambruschini, 4, 20156 Milan, Italy)

  • Emanuela Colombo

    (Department of Energy, Politecnico di Milano, Via Lambruschini, 4, 20156 Milan, Italy)

Abstract

The coexistence of the need to improve economic conditions and the conscious use of environmental resources plays a central role in today’s sustainable development challenge. In this study, a novel integrated framework to evaluate the impact of new technological interventions is presented and an application to smallholder coffee farms and their supply chains in Kenya is proposed. This methodology is able to combine multiple information through the joint use of three approaches: supply chain analysis, input-output analysis, and energy system modeling. Application to the context of the Kenyan coffee sector enables framework validation: shading management measures, the introduction of eco-pulpers, and the exploitation of coffee waste biomass for power generation were compared within a holistic high-level perspective. The implementation of shading practices, carried out with fruit trees, shows the most relevant effects from the economic point of view, providing farmers with an additional source of income and generating $903 of work for every million of local currency (about $9k) invested in this solution. The same investment would save up to 1.46 M m 3 of water per year with the eco-pulpers technology. Investing the same amount in coffee-biomass power plants would displace a small portion of production from heavy-duty oil and avoid importing a portion of fertilizer, saving up to 11 tons of CO 2 and around $4k per year. The results suggest the optimal allocation of a $100m budget, which can be affected by adding additional constraints on minimum environmental or social targets in line with sustainable development goals.

Suggested Citation

  • Nicolò Golinucci & Nicolò Stevanato & Negar Namazifard & Mohammad Amin Tahavori & Lamya Adil Sulliman Hussain & Benedetta Camilli & Federica Inzoli & Matteo Vincenzo Rocco & Emanuela Colombo, 2022. "Comprehensive and Integrated Impact Assessment Framework for Development Policies Evaluation: Definition and Application to Kenyan Coffee Sector," Energies, MDPI, vol. 15(9), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3071-:d:799844
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3071/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3071/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vignesh Sridharan & Oliver Broad & Abhishek Shivakumar & Mark Howells & Brent Boehlert & David G. Groves & H-Holger Rogner & Constantinos Taliotis & James E. Neumann & Kenneth M. Strzepek & Robert Lem, 2019. "Resilience of the Eastern African electricity sector to climate driven changes in hydropower generation," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    2. Carl-Johan H. Södersten & Manfred Lenzen, 2020. "A supply-use approach to capital endogenization in input–output analysis," Economic Systems Research, Taylor & Francis Journals, vol. 32(4), pages 451-475, October.
    3. Rahn, Eric & Vaast, Philippe & Läderach, Peter & van Asten, Piet & Jassogne, Laurence & Ghazoul, Jaboury, 2018. "Exploring adaptation strategies of coffee production to climate change using a process-based model," Ecological Modelling, Elsevier, vol. 371(C), pages 76-89.
    4. Lamya Adil Suliman Hussain & Federica Inzoli & Nicolò Golinucci & Nicolò Stevanato & Matteo Vincenzo Rocco & Emanuela Colombo, 2020. "Supply Chain Analysis with focus on Africa FEEM's Methodological Approach," Reports, Fondazione Eni Enrico Mattei, June.
    5. Pfenninger, Stefan & Keirstead, James, 2015. "Renewables, nuclear, or fossil fuels? Scenarios for Great Britain’s power system considering costs, emissions and energy security," Applied Energy, Elsevier, vol. 152(C), pages 83-93.
    6. Federico Battista & Nicola Frison & David Bolzonella, 2019. "Energy and Nutrients’ Recovery in Anaerobic Digestion of Agricultural Biomass: An Italian Perspective for Future Applications," Energies, MDPI, vol. 12(17), pages 1-13, August.
    7. Guanghua Chi & Han Fang & Sourav Chatterjee & Joshua E. Blumenstock, 2022. "Microestimates of wealth for all low- and middle-income countries," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 119(3), pages 2113658119-, January.
    8. Bazilian, Morgan & Rogner, Holger & Howells, Mark & Hermann, Sebastian & Arent, Douglas & Gielen, Dolf & Steduto, Pasquale & Mueller, Alexander & Komor, Paul & Tol, Richard S.J. & Yumkella, Kandeh K., 2011. "Considering the energy, water and food nexus: Towards an integrated modelling approach," Energy Policy, Elsevier, vol. 39(12), pages 7896-7906.
    9. United Nations UN, 2015. "Transforming our World: the 2030 Agenda for Sustainable Development," Working Papers id:7559, eSocialSciences.
    10. Jezeer, Rosalien E. & Santos, Maria J. & Boot, René G.A. & Junginger, Martin & Verweij, Pita A., 2018. "Effects of shade and input management on economic performance of small-scale Peruvian coffee systems," Agricultural Systems, Elsevier, vol. 162(C), pages 179-190.
    11. Pierre Boulanger & Hasan Dudu & Emanuele Ferrari & Alfredo Mainar Causape & Jean Balie & Lucia Battaglia, 2018. "Policy options to support the Agriculture Sector Growth and Transformation Strategy in Kenya: A CGE analysis," JRC Research Reports JRC111251, Joint Research Centre.
    12. Alfredo José Mainar‐Causapé & Pierre Boulanger & Hasan Dudu & Emanuele Ferrari, 2020. "Policy impact assessment in developing countries using Social Accounting Matrices: The Kenya SAM 2014," Review of Development Economics, Wiley Blackwell, vol. 24(3), pages 1128-1149, August.
    13. Pfenninger, Stefan & DeCarolis, Joseph & Hirth, Lion & Quoilin, Sylvain & Staffell, Iain, 2017. "The importance of open data and software: Is energy research lagging behind?," Energy Policy, Elsevier, vol. 101(C), pages 211-215.
    14. Manfred Lenzen & Daniel Moran & Keiichiro Kanemoto & Arne Geschke, 2013. "Building Eora: A Global Multi-Region Input-Output Database At High Country And Sector Resolution," Economic Systems Research, Taylor & Francis Journals, vol. 25(1), pages 20-49, March.
    15. Surendra, K.C. & Takara, Devin & Hashimoto, Andrew G. & Khanal, Samir Kumar, 2014. "Biogas as a sustainable energy source for developing countries: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 846-859.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Bandarin & Enrico Ciciotti & Marco Cremaschi & Giovanna Madera & Paolo Perulli & Diana Shendrikova, 2020. "Which Future for Cities after COVID-19 An international Survey," Reports, Fondazione Eni Enrico Mattei, October.
    2. Nicolò Golinucci & Nicolò Stevanato & Federica Inzoli & Mohammad Amin Tahavori & Negar Namazifard & Lamya Hussain & Benedetta Camilli & Matteo Vincenzo Rocco & Emanuela Colombo, 2020. "Comprehensive and Integrated Impact Assessment Framework for Development Policies Evaluation: Definition and Application To Kenya," Reports, Fondazione Eni Enrico Mattei, November.
    3. María Priscila Ramos & Estefanía Custodio & Sofía Jiménez & Alfredo J. Mainar-Causapé & Pierre Boulanger & Emanuele Ferrari, 2022. "Do agri-food market incentives improve food security and nutrition indicators? a microsimulation evaluation for Kenya," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(1), pages 209-227, February.
    4. Ingrid Boas & Frank Biermann & Norichika Kanie, 2016. "Cross-sectoral strategies in global sustainability governance: towards a nexus approach," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 16(3), pages 449-464, June.
    5. Jezeer, Rosalien E. & Santos, Maria J. & Verweij, Pita A. & Boot, René G.A. & Clough, Yann, 2019. "Benefits for multiple ecosystem services in Peruvian coffee agroforestry systems without reducing yield," Ecosystem Services, Elsevier, vol. 40(C).
    6. Omolola M. Adeola & Abel Ramoelo & Brian Mantlana & Oscar Mokotedi & Wongalethu Silwana & Philemon Tsele, 2022. "Review of Publications on the Water-Energy-Food Nexus and Climate Change Adaptation Using Bibliometric Analysis: A Case Study of Africa," Sustainability, MDPI, vol. 14(20), pages 1-15, October.
    7. Juliana Segura-Salazar & Luís Marcelo Tavares, 2018. "Sustainability in the Minerals Industry: Seeking a Consensus on Its Meaning," Sustainability, MDPI, vol. 10(5), pages 1-38, May.
    8. Radu Petrariu & Marius Constantin & Mihai Dinu & Simona Roxana Pătărlăgeanu & Mădălina Elena Deaconu, 2021. "Water, Energy, Food, Waste Nexus: Between Synergy and Trade-Offs in Romania Based on Entrepreneurship and Economic Performance," Energies, MDPI, vol. 14(16), pages 1-23, August.
    9. Pritee Sharma & Salla Nithyanth Kumar, 2020. "The global governance of water, energy, and food nexus: allocation and access for competing demands," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 20(2), pages 377-391, June.
    10. Wenwu Zhao & Caichun Yin & Ting Hua & Michael E. Meadows & Yan Li & Yanxu Liu & Francesco Cherubini & Paulo Pereira & Bojie Fu, 2022. "Achieving the Sustainable Development Goals in the post-pandemic era," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-7, December.
    11. Niina Helistö & Juha Kiviluoma & Jussi Ikäheimo & Topi Rasku & Erkka Rinne & Ciara O’Dwyer & Ran Li & Damian Flynn, 2019. "Backbone—An Adaptable Energy Systems Modelling Framework," Energies, MDPI, vol. 12(17), pages 1-34, September.
    12. Balderrama, Sergio & Lombardi, Francesco & Riva, Fabio & Canedo, Walter & Colombo, Emanuela & Quoilin, Sylvain, 2019. "A two-stage linear programming optimization framework for isolated hybrid microgrids in a rural context: The case study of the “El Espino” community," Energy, Elsevier, vol. 188(C).
    13. Carmona, Roberto & Miranda, Ricardo & Rodriguez, Pablo & Garrido, René & Serafini, Daniel & Rodriguez, Angel & Mena, Marcelo & Fernandez Gil, Alejandro & Valdes, Javier & Masip, Yunesky, 2024. "Assessment of the green hydrogen value chain in cases of the local industry in Chile applying an optimization model," Energy, Elsevier, vol. 300(C).
    14. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    15. Bali Swain, Ranjula & Ranganathan, Shyam, 2021. "Modeling interlinkages between sustainable development goals using network analysis," World Development, Elsevier, vol. 138(C).
    16. Kasinath, Archana & Fudala-Ksiazek, Sylwia & Szopinska, Malgorzata & Bylinski, Hubert & Artichowicz, Wojciech & Remiszewska-Skwarek, Anna & Luczkiewicz, Aneta, 2021. "Biomass in biogas production: Pretreatment and codigestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    17. Pritee Sharma & Salla Nithyanth Kumar, 0. "The global governance of water, energy, and food nexus: allocation and access for competing demands," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 0, pages 1-15.
    18. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    19. Gheorghe Hurduzeu & Radu Lucian Pânzaru & Dragoș Mihai Medelete & Andi Ciobanu & Constanța Enea, 2022. "The Development of Sustainable Agriculture in EU Countries and the Potential Achievement of Sustainable Development Goals Specific Targets (SDG 2)," Sustainability, MDPI, vol. 14(23), pages 1-24, November.
    20. Lombardi, Francesco & Rocco, Matteo Vincenzo & Colombo, Emanuela, 2019. "A multi-layer energy modelling methodology to assess the impact of heat-electricity integration strategies: The case of the residential cooking sector in Italy," Energy, Elsevier, vol. 170(C), pages 1249-1260.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3071-:d:799844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.