IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-018-08275-7.html
   My bibliography  Save this article

Resilience of the Eastern African electricity sector to climate driven changes in hydropower generation

Author

Listed:
  • Vignesh Sridharan

    (KTH – Royal Institute of Technology, Unit of Energy Systems Analysis)

  • Oliver Broad

    (KTH – Royal Institute of Technology, Unit of Energy Systems Analysis
    University College London)

  • Abhishek Shivakumar

    (KTH – Royal Institute of Technology, Unit of Energy Systems Analysis)

  • Mark Howells

    (KTH – Royal Institute of Technology, Unit of Energy Systems Analysis)

  • Brent Boehlert

    (Industrial Economics Inc.
    Massachusetts Institute of Technology)

  • David G. Groves

    (RAND Corporation)

  • H-Holger Rogner

    (KTH – Royal Institute of Technology, Unit of Energy Systems Analysis
    International Institute for Applied Systems Analysis)

  • Constantinos Taliotis

    (The Cyprus Institute)

  • James E. Neumann

    (Industrial Economics Inc.)

  • Kenneth M. Strzepek

    (Industrial Economics Inc.
    Massachusetts Institute of Technology)

  • Robert Lempert

    (RAND Corporation)

  • Brian Joyce

    (Stockholm Environment Institute-US Centre)

  • Annette Huber-Lee

    (Stockholm Environment Institute-US Centre)

  • Raffaello Cervigni

    (World Bank)

Abstract

Notwithstanding current heavy dependence on gas-fired electricity generation in the Eastern African Power Pool (EAPP), hydropower is expected to play an essential role in improving electricity access in the region. Expansion planning of electricity infrastructure is critical to support investment and maintaining balanced consumer electricity prices. Variations in water availability due to a changing climate could leave hydro infrastructure stranded or result in underutilization of available resources. In this study, we develop a framework consisting of long-term models for electricity supply and water systems management, to assess the vulnerability of potential expansion plans to the effects of climate change. We find that the most resilient EAPP rollout strategy corresponds to a plan optimised for a slightly wetter climate compared to historical trends. This study demonstrates that failing to climate-proof infrastructure investments can result in significant electricity price fluctuations in selected countries (Uganda & Tanzania) while others, such as Egypt, are less vulnerable.

Suggested Citation

  • Vignesh Sridharan & Oliver Broad & Abhishek Shivakumar & Mark Howells & Brent Boehlert & David G. Groves & H-Holger Rogner & Constantinos Taliotis & James E. Neumann & Kenneth M. Strzepek & Robert Lem, 2019. "Resilience of the Eastern African electricity sector to climate driven changes in hydropower generation," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-08275-7
    DOI: 10.1038/s41467-018-08275-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-08275-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-08275-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tidwell, Vincent C. & Gunda, Thushara & Gayoso, Natalie, 2021. "Plant-level characteristics could aid in the assessment of water-related threats to the electric power sector," Applied Energy, Elsevier, vol. 282(PA).
    2. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    3. Falchetta, Giacomo & Gernaat, David E.H.J. & Hunt, Julian & Sterl, Sebastian, 2019. "Hydropower dependency and climate change in sub-Saharan Africa: A nexus framework and evidence-based review," Earth Arxiv w7rj3, Center for Open Science.
    4. Hayrol Azril Mohamed Shaffril & Asnarulkhadi Abu Samah & Samsul Farid Samsuddin, 2022. "The Impacts of Fishermen’s Resilience towards Climate Change on Their Well-Being," Sustainability, MDPI, vol. 14(6), pages 1-19, March.
    5. Mark Howells & Brent Boehlert & Pablo César Benitez, 2021. "Potential Climate Change Risks to Meeting Zimbabwe’s NDC Goals and How to Become Resilient," Energies, MDPI, vol. 14(18), pages 1-26, September.
    6. Suomalainen, Kiti & Wen, Le & Sheng, Mingyue Selena & Sharp, Basil, 2022. "Climate change impact on the cost of decarbonisation in a hydro-based power system," Energy, Elsevier, vol. 246(C).
    7. Nechifor, Victor & Basheer, Mohammed & Calzadilla, Alvaro & Obuobie, Emmanuel & Harou, Julien J., 2022. "Financing national scale energy projects in developing countries – An economy-wide evaluation of Ghana's Bui Dam," Energy Economics, Elsevier, vol. 111(C).
    8. Zhang, Yi & Cheng, Chuntian & Yang, Tiantian & Jin, Xiaoyu & Jia, Zebin & Shen, Jianjian & Wu, Xinyu, 2022. "Assessment of climate change impacts on the hydro-wind-solar energy supply system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    9. Paredes-Vergara, Matías & Palma-Behnke, Rodrigo & Haas, Jannik, 2024. "Characterizing decision making under deep uncertainty for model-based energy transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    10. Wang, Chong & Ju, Ping & Wu, Feng & Pan, Xueping & Wang, Zhaoyu, 2022. "A systematic review on power system resilience from the perspective of generation, network, and load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Oikonomou, Konstantinos & Tarroja, Brian & Kern, Jordan & Voisin, Nathalie, 2022. "Core process representation in power system operational models: Gaps, challenges, and opportunities for multisector dynamics research," Energy, Elsevier, vol. 238(PC).
    12. Rebecka Ericsdotter Engström & Georgia Destouni & Mark Howells & Vivek Ramaswamy & Holger Rogner & Morgan Bazilian, 2019. "Cross-Scale Water and Land Impacts of Local Climate and Energy Policy—A Local Swedish Analysis of Selected SDG Interactions," Sustainability, MDPI, vol. 11(7), pages 1-28, March.
    13. Cristiano, S. & Ulgiati, S. & Gonella, F., 2021. "Systemic sustainability and resilience assessment of health systems, addressing global societal priorities: Learnings from a top nonprofit hospital in a bioclimatic building in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    14. Nicolò Golinucci & Nicolò Stevanato & Negar Namazifard & Mohammad Amin Tahavori & Lamya Adil Sulliman Hussain & Benedetta Camilli & Federica Inzoli & Matteo Vincenzo Rocco & Emanuela Colombo, 2022. "Comprehensive and Integrated Impact Assessment Framework for Development Policies Evaluation: Definition and Application to Kenyan Coffee Sector," Energies, MDPI, vol. 15(9), pages 1-19, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-08275-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.