Validation of a Large-Eddy Simulation Approach for Prediction of the Ground Roughness Influence on Wind Turbine Wakes
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Sarlak, H. & Meneveau, C. & Sørensen, J.N., 2015. "Role of subgrid-scale modeling in large eddy simulation of wind turbine wake interactions," Renewable Energy, Elsevier, vol. 77(C), pages 386-399.
- Feifei Xue & Heping Duan & Chang Xu & Xingxing Han & Yanqing Shangguan & Tongtong Li & Zhefei Fen, 2022. "Research on the Power Capture and Wake Characteristics of a Wind Turbine Based on a Modified Actuator Line Model," Energies, MDPI, vol. 15(1), pages 1-20, January.
- Stevens, Richard J.A.M. & Martínez-Tossas, Luis A. & Meneveau, Charles, 2018. "Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments," Renewable Energy, Elsevier, vol. 116(PA), pages 470-478.
- Yaqing Jin & Huiwen Liu & Rajan Aggarwal & Arvind Singh & Leonardo P. Chamorro, 2016. "Effects of Freestream Turbulence in a Model Wind Turbine Wake," Energies, MDPI, vol. 9(10), pages 1-12, October.
- Stevens, Richard J.A.M. & Graham, Jason & Meneveau, Charles, 2014. "A concurrent precursor inflow method for Large Eddy Simulations and applications to finite length wind farms," Renewable Energy, Elsevier, vol. 68(C), pages 46-50.
- Yu-Ting Wu & Fernando Porté-Agel, 2012. "Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study," Energies, MDPI, vol. 5(12), pages 1-23, December.
- Shantanu Purohit & Ijaz Fazil Syed Ahmed Kabir & E. Y. K. Ng, 2021. "On the Accuracy of uRANS and LES-Based CFD Modeling Approaches for Rotor and Wake Aerodynamics of the (New) MEXICO Wind Turbine Rotor Phase-III," Energies, MDPI, vol. 14(16), pages 1-26, August.
- Victor P. Stein & Hans-Jakob Kaltenbach, 2019. "Non-Equilibrium Scaling Applied to the Wake Evolution of a Model Scale Wind Turbine," Energies, MDPI, vol. 12(14), pages 1-24, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Esmail Mahmoodi & Mohammad Khezri & Arash Ebrahimi & Uwe Ritschel & Leonardo P. Chamorro & Ali Khanjari, 2023. "A Simple Model for Wake-Induced Aerodynamic Interaction of Wind Turbines," Energies, MDPI, vol. 16(15), pages 1-13, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ge, Mingwei & Gayme, Dennice F. & Meneveau, Charles, 2021. "Large-eddy simulation of wind turbines immersed in the wake of a cube-shaped building," Renewable Energy, Elsevier, vol. 163(C), pages 1063-1077.
- Zhang, Ziyu & Huang, Peng & Bitsuamlak, Girma & Cao, Shuyang, 2024. "Large-eddy simulation of upwind-hill effects on wind-turbine wakes and power performance," Energy, Elsevier, vol. 294(C).
- Yunliang Li & Zhaobin Li & Zhideng Zhou & Xiaolei Yang, 2023. "Large-Eddy Simulation of Wind Turbine Wakes in Forest Terrain," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
- Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2024. "A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
- Purohit, Shantanu & Ng, E.Y.K. & Syed Ahmed Kabir, Ijaz Fazil, 2022. "Evaluation of three potential machine learning algorithms for predicting the velocity and turbulence intensity of a wind turbine wake," Renewable Energy, Elsevier, vol. 184(C), pages 405-420.
- Antonio Crespo, 2023. "Computational Fluid Dynamic Models of Wind Turbine Wakes," Energies, MDPI, vol. 16(4), pages 1-3, February.
- Öztürk, Buğrahan & Hassanein, Abdelrahman & Akpolat, M Tuğrul & Abdulrahim, Anas & Perçin, Mustafa & Uzol, Oğuz, 2023. "On the wake characteristics of a model wind turbine and a porous disc: Effects of freestream turbulence intensity," Renewable Energy, Elsevier, vol. 212(C), pages 238-250.
- Zhang, Huan & Ge, Mingwei & Liu, Yongqian & Yang, Xiang I.A., 2021. "A new coupled model for the equivalent roughness heights of wind farms," Renewable Energy, Elsevier, vol. 171(C), pages 34-46.
- Eidi, Ali & Ghiassi, Reza & Yang, Xiang & Abkar, Mahdi, 2021. "Model-form uncertainty quantification in RANS simulations of wakes and power losses in wind farms," Renewable Energy, Elsevier, vol. 179(C), pages 2212-2223.
- Hegazy, Amr & Blondel, Frédéric & Cathelain, Marie & Aubrun, Sandrine, 2022. "LiDAR and SCADA data processing for interacting wind turbine wakes with comparison to analytical wake models," Renewable Energy, Elsevier, vol. 181(C), pages 457-471.
- Takanori Uchida, 2020. "Effects of Inflow Shear on Wake Characteristics of Wind-Turbines over Flat Terrain," Energies, MDPI, vol. 13(14), pages 1-31, July.
- Bayron, Paul & Kelso, Richard & Chin, Rey, 2024. "Experimental investigation of tip-speed-ratio influence on horizontal-axis wind turbine wake dynamics," Renewable Energy, Elsevier, vol. 225(C).
- Emmanuvel Joseph Aju & Dhanush Bhamitipadi Suresh & Yaqing Jin, 2020. "The Influence of Winglet Pitching on the Performance of a Model Wind Turbine: Aerodynamic Loads, Rotating Speed, and Wake Statistics," Energies, MDPI, vol. 13(19), pages 1-15, October.
- Liang, Xiaoling & Fu, Shifeng & Cai, Fulin & Han, Xingxing & Zhu, Weijun & Yang, Hua & Shen, Wenzhong, 2023. "Experimental investigation on wake characteristics of wind turbine and a new two-dimensional wake model," Renewable Energy, Elsevier, vol. 203(C), pages 373-381.
- Ingrid Neunaber & Michael Hölling & Richard J. A. M. Stevens & Gerard Schepers & Joachim Peinke, 2020. "Distinct Turbulent Regions in the Wake of a Wind Turbine and Their Inflow-Dependent Locations: The Creation of a Wake Map," Energies, MDPI, vol. 13(20), pages 1-20, October.
- Tristan Revaz & Fernando Porté-Agel, 2021. "Large-Eddy Simulation of Wind Turbine Flows: A New Evaluation of Actuator Disk Models," Energies, MDPI, vol. 14(13), pages 1-22, June.
- Liu, Luoqin & Stevens, Richard J.A.M., 2021. "Effects of atmospheric stability on the performance of a wind turbine located behind a three-dimensional hill," Renewable Energy, Elsevier, vol. 175(C), pages 926-935.
- Mou Lin & Fernando Porté-Agel, 2019. "Large-Eddy Simulation of Yawed Wind-Turbine Wakes: Comparisons with Wind Tunnel Measurements and Analytical Wake Models," Energies, MDPI, vol. 12(23), pages 1-18, November.
- Takanori Uchida & Yoshihiro Taniyama & Yuki Fukatani & Michiko Nakano & Zhiren Bai & Tadasuke Yoshida & Masaki Inui, 2020. "A New Wind Turbine CFD Modeling Method Based on a Porous Disk Approach for Practical Wind Farm Design," Energies, MDPI, vol. 13(12), pages 1-27, June.
- Pin Lyu & Wen-Li Chen & Hui Li & Lian Shen, 2019. "A Numerical Study on the Development of Self-Similarity in a Wind Turbine Wake Using an Improved Pseudo-Spectral Large-Eddy Simulation Solver," Energies, MDPI, vol. 12(4), pages 1-24, February.
More about this item
Keywords
turbulent boundary layer; roughness; wind turbine wake; large-eddy simulation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2579-:d:785351. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.