IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v157y2020icp941-950.html
   My bibliography  Save this article

Study on interaction between the wind-turbine wake and the urban district model by large eddy simulation

Author

Listed:
  • Ge, Mingwei
  • Zhang, Shuaibin
  • Meng, Hang
  • Ma, Hongliang

Abstract

Urban wind power shows a great potential and plays a significant role for a sustainable city. As a fundamental issue, the interaction between the wind-turbine wake and a building array is studied here via large eddy simulation. The standard actuator disc model is used to model the wind turbine, and 16 cube-shaped buildings are used to represent the urban district. It is found that due to the blocking effect of the downstream urban district, a high-pressure region is formed upstream, which dramatically changes the trajectory of the wind-turbine wake and results in a fast wake recovery. In addition, the wind-turbine wake suppresses the vertical momentum flux and thereby reduces the wind speed in the streamwise streets. At the top region of the urban block below the trajectory of the turbine wake, the turbulence intensity substantially increases at the entrance region of the building array, while the overall turbulence intensity is considerably reduced at the bottom of the block.

Suggested Citation

  • Ge, Mingwei & Zhang, Shuaibin & Meng, Hang & Ma, Hongliang, 2020. "Study on interaction between the wind-turbine wake and the urban district model by large eddy simulation," Renewable Energy, Elsevier, vol. 157(C), pages 941-950.
  • Handle: RePEc:eee:renene:v:157:y:2020:i:c:p:941-950
    DOI: 10.1016/j.renene.2020.04.134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120306728
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.04.134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu-Ting Wu & Fernando Porté-Agel, 2012. "Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study," Energies, MDPI, vol. 5(12), pages 1-23, December.
    2. Stevens, Richard J.A.M. & Martínez-Tossas, Luis A. & Meneveau, Charles, 2018. "Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments," Renewable Energy, Elsevier, vol. 116(PA), pages 470-478.
    3. Wang, Zhi-Hua & Zhao, Xiaoxi & Yang, Jiachuan & Song, Jiyun, 2016. "Cooling and energy saving potentials of shade trees and urban lawns in a desert city," Applied Energy, Elsevier, vol. 161(C), pages 437-444.
    4. Bai, H.L. & Chan, C.M. & Zhu, X.M. & Li, K.M., 2019. "A numerical study on the performance of a Savonius-type vertical-axis wind turbine in a confined long channel," Renewable Energy, Elsevier, vol. 139(C), pages 102-109.
    5. Ge, Mingwei & Wu, Ying & Liu, Yongqian & Yang, Xiang I.A., 2019. "A two-dimensional Jensen model with a Gaussian-shaped velocity deficit," Renewable Energy, Elsevier, vol. 141(C), pages 46-56.
    6. Ge, Mingwei & Wu, Ying & Liu, Yongqian & Li, Qi, 2019. "A two-dimensional model based on the expansion of physical wake boundary for wind-turbine wakes," Applied Energy, Elsevier, vol. 233, pages 975-984.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Xiantao & Ge, Mingwei & Tan, Wei & Li, Qi, 2021. "Impacts of coexisting buildings and trees on the performance of rooftop wind turbines: An idealized numerical study," Renewable Energy, Elsevier, vol. 177(C), pages 164-180.
    2. Zhang, Huan & Ge, Mingwei & Liu, Yongqian & Yang, Xiang I.A., 2021. "A new coupled model for the equivalent roughness heights of wind farms," Renewable Energy, Elsevier, vol. 171(C), pages 34-46.
    3. Wen, Jiahao & Zhou, Lei & Zhang, Hongfu, 2023. "Mode interpretation of blade number effects on wake dynamics of small-scale horizontal axis wind turbine," Energy, Elsevier, vol. 263(PA).
    4. Isabel Cristina Gil-García & María Socorro García-Cascales & Angel Molina-García, 2022. "Urban Wind: An Alternative for Sustainable Cities," Energies, MDPI, vol. 15(13), pages 1-20, June.
    5. Dar, Arslan Salim & Armengol Barcos, Guillem & Porté-Agel, Fernando, 2022. "An experimental investigation of a roof-mounted horizontal-axis wind turbine in an idealized urban environment," Renewable Energy, Elsevier, vol. 193(C), pages 1049-1061.
    6. Hornshøj-Møller, Simon D. & Nielsen, Peter D. & Forooghi, Pourya & Abkar, Mahdi, 2021. "Quantifying structural uncertainties in Reynolds-averaged Navier–Stokes simulations of wind turbine wakes," Renewable Energy, Elsevier, vol. 164(C), pages 1550-1558.
    7. Li, Li & Wang, Bing & Ge, Mingwei & Huang, Zhi & Li, Xintao & Liu, Yongqian, 2023. "A novel superposition method for streamwise turbulence intensity of wind-turbine wakes," Energy, Elsevier, vol. 276(C).
    8. Ma, Hongliang & Ge, Mingwei & Wu, Guangxing & Du, Bowen & Liu, Yongqian, 2021. "Formulas of the optimized yaw angles for cooperative control of wind farms with aligned turbines to maximize the power production," Applied Energy, Elsevier, vol. 303(C).
    9. Angelo Algieri & Pietropaolo Morrone & Sergio Bova, 2020. "Techno-Economic Analysis of Biofuel, Solar and Wind Multi-Source Small-Scale CHP Systems," Energies, MDPI, vol. 13(11), pages 1-21, June.
    10. Eidi, Ali & Ghiassi, Reza & Yang, Xiang & Abkar, Mahdi, 2021. "Model-form uncertainty quantification in RANS simulations of wakes and power losses in wind farms," Renewable Energy, Elsevier, vol. 179(C), pages 2212-2223.
    11. Yang, Haoze & Ge, Mingwei & Gu, Bo & Du, Bowen & Liu, Yongqian, 2022. "The effect of swell on marine atmospheric boundary layer and the operation of an offshore wind turbine," Energy, Elsevier, vol. 244(PB).
    12. Zhang, Shaohai & Duan, Huanfeng & Lu, Lin & He, Ruiyang & Gao, Xiaoxia & Zhu, Songye, 2024. "Quantification of three-dimensional added turbulence intensity for the horizontal-axis wind turbine considering the wake anisotropy," Energy, Elsevier, vol. 294(C).
    13. Paxis Marques João Roque & Shyama Pada Chowdhury & Zhongjie Huan, 2021. "Performance Enhancement of Proposed Namaacha Wind Farm by Minimising Losses Due to the Wake Effect: A Mozambican Case Study," Energies, MDPI, vol. 14(14), pages 1-22, July.
    14. Li, Li & Huang, Zhi & Ge, Mingwei & Zhang, Qiying, 2022. "A novel three-dimensional analytical model of the added streamwise turbulence intensity for wind-turbine wakes," Energy, Elsevier, vol. 238(PB).
    15. Zhang, Shuaibin & Du, Bowen & Ge, Mingwei & Zuo, Yingtao, 2022. "Study on the operation of small rooftop wind turbines and its effect on the wind environment in blocks," Renewable Energy, Elsevier, vol. 183(C), pages 708-718.
    16. Ge, Mingwei & Gayme, Dennice F. & Meneveau, Charles, 2021. "Large-eddy simulation of wind turbines immersed in the wake of a cube-shaped building," Renewable Energy, Elsevier, vol. 163(C), pages 1063-1077.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ge, Mingwei & Gayme, Dennice F. & Meneveau, Charles, 2021. "Large-eddy simulation of wind turbines immersed in the wake of a cube-shaped building," Renewable Energy, Elsevier, vol. 163(C), pages 1063-1077.
    2. Zhang, Huan & Ge, Mingwei & Liu, Yongqian & Yang, Xiang I.A., 2021. "A new coupled model for the equivalent roughness heights of wind farms," Renewable Energy, Elsevier, vol. 171(C), pages 34-46.
    3. Tian, Linlin & Song, Yilei & Xiao, Pengcheng & Zhao, Ning & Shen, Wenzhong & Zhu, Chunling, 2022. "A new three-dimensional analytical model for wind turbine wake turbulence intensity predictions," Renewable Energy, Elsevier, vol. 189(C), pages 762-776.
    4. Ziyu Zhang & Peng Huang & Haocheng Sun, 2020. "A Novel Analytical Wake Model with a Cosine-Shaped Velocity Deficit," Energies, MDPI, vol. 13(13), pages 1-20, June.
    5. Li, Li & Wang, Bing & Ge, Mingwei & Huang, Zhi & Li, Xintao & Liu, Yongqian, 2023. "A novel superposition method for streamwise turbulence intensity of wind-turbine wakes," Energy, Elsevier, vol. 276(C).
    6. Zhang, Ziyu & Huang, Peng & Bitsuamlak, Girma & Cao, Shuyang, 2024. "Large-eddy simulation of upwind-hill effects on wind-turbine wakes and power performance," Energy, Elsevier, vol. 294(C).
    7. Fan, Xiantao & Ge, Mingwei & Tan, Wei & Li, Qi, 2021. "Impacts of coexisting buildings and trees on the performance of rooftop wind turbines: An idealized numerical study," Renewable Energy, Elsevier, vol. 177(C), pages 164-180.
    8. Li, Li & Huang, Zhi & Ge, Mingwei & Zhang, Qiying, 2022. "A novel three-dimensional analytical model of the added streamwise turbulence intensity for wind-turbine wakes," Energy, Elsevier, vol. 238(PB).
    9. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    10. Zhang, Shaohai & Duan, Huanfeng & Lu, Lin & He, Ruiyang & Gao, Xiaoxia & Zhu, Songye, 2024. "Quantification of three-dimensional added turbulence intensity for the horizontal-axis wind turbine considering the wake anisotropy," Energy, Elsevier, vol. 294(C).
    11. Ma, Hongliang & Ge, Mingwei & Wu, Guangxing & Du, Bowen & Liu, Yongqian, 2021. "Formulas of the optimized yaw angles for cooperative control of wind farms with aligned turbines to maximize the power production," Applied Energy, Elsevier, vol. 303(C).
    12. Shen, Wen Zhong & Lin, Jian Wei & Jiang, Yu Hang & Feng, Ju & Cheng, Li & Zhu, Wei Jun, 2023. "A novel yaw wake model for wind farm control applications," Renewable Energy, Elsevier, vol. 218(C).
    13. Ti, Zilong & Deng, Xiao Wei & Yang, Hongxing, 2020. "Wake modeling of wind turbines using machine learning," Applied Energy, Elsevier, vol. 257(C).
    14. Gu, Bo & Meng, Hang & Ge, Mingwei & Zhang, Hongtao & Liu, Xinyu, 2021. "Cooperative multiagent optimization method for wind farm power delivery maximization," Energy, Elsevier, vol. 233(C).
    15. Mingqiu Liu & Zhichang Liang & Haixiao Liu, 2022. "Numerical Investigations of Wake Expansion in the Offshore Wind Farm Using a Large Eddy Simulation," Energies, MDPI, vol. 15(6), pages 1-19, March.
    16. Ti, Zilong & Deng, Xiao Wei & Zhang, Mingming, 2021. "Artificial Neural Networks based wake model for power prediction of wind farm," Renewable Energy, Elsevier, vol. 172(C), pages 618-631.
    17. Purohit, Shantanu & Ng, E.Y.K. & Syed Ahmed Kabir, Ijaz Fazil, 2022. "Evaluation of three potential machine learning algorithms for predicting the velocity and turbulence intensity of a wind turbine wake," Renewable Energy, Elsevier, vol. 184(C), pages 405-420.
    18. Victor P. Stein & Hans-Jakob Kaltenbach, 2022. "Validation of a Large-Eddy Simulation Approach for Prediction of the Ground Roughness Influence on Wind Turbine Wakes," Energies, MDPI, vol. 15(7), pages 1-25, April.
    19. Yang, Haoze & Ge, Mingwei & Gu, Bo & Du, Bowen & Liu, Yongqian, 2022. "The effect of swell on marine atmospheric boundary layer and the operation of an offshore wind turbine," Energy, Elsevier, vol. 244(PB).
    20. Wang, Tengyuan & Cai, Chang & Wang, Xinbao & Wang, Zekun & Chen, Yewen & Song, Juanjuan & Xu, Jianzhong & Zhang, Yuning & Li, Qingan, 2023. "A new Gaussian analytical wake model validated by wind tunnel experiment and LiDAR field measurements under different turbulent flow," Energy, Elsevier, vol. 271(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:157:y:2020:i:c:p:941-950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.