IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i14p2763-d249630.html
   My bibliography  Save this article

Non-Equilibrium Scaling Applied to the Wake Evolution of a Model Scale Wind Turbine

Author

Listed:
  • Victor P. Stein

    (Fachgebiet Strömungsbeeinflussung und Aeroakustik, Technische Universität München, 85748 Garching, Germany)

  • Hans-Jakob Kaltenbach

    (Fachgebiet Strömungsbeeinflussung und Aeroakustik, Technische Universität München, 85748 Garching, Germany)

Abstract

The present paper addresses the evolution of turbulence characteristics in wind turbine wakes immersed in a turbulent boundary layer. The study thereby focuses on finding physically consistent scaling laws for the wake width, the velocity deficit, and the Reynolds stresses in the far wake region. For this purpose, the concept of an added wake is derived which allows to analyse the self-similarity of the added flow quantities and the applicability of the non-equilibrium dissipation theory. The investigation is based on wind tunnel measurements in the wake of a three-bladed horizontal axis wind turbine model (HAWT) immersed in two neutrally-stratified turbulent boundary layers of different aerodynamic roughness length. The dataset also includes wake measurements for various yaw angles. A high degree of self-similarity is found in the lateral profiles of the velocity deficit and of the added Reynolds stress components. It is shown that these can be described by combined Gaussian shape functions. In the vertical, self-similarity can just be shown in the upper part of the wake. Moreover, it is observed that the degree of self-similarity is affected by the ground roughness. Results suggest an approximately constant anisotropy of the added turbulent stresses in the far wake, and the axial scaling of the added Reynolds stress components is found to be in accordance with non-equilibrium dissipation theory. It predicts a x − 1 decay of the added turbulent intensity I + , and a x − 2 evolution of the added Reynolds shear stresses Δ u i ′ u j ′ ¯ and the velocity deficit Δ u . Based on these findingsa semi-empirical model is proposed for predicting the Reynolds stresses in the far wake region which can easily be coupled with existing analytical wake models. The proposed model is found to be in good agreement with the measurement results.

Suggested Citation

  • Victor P. Stein & Hans-Jakob Kaltenbach, 2019. "Non-Equilibrium Scaling Applied to the Wake Evolution of a Model Scale Wind Turbine," Energies, MDPI, vol. 12(14), pages 1-24, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2763-:d:249630
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/14/2763/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/14/2763/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yaqing Jin & Huiwen Liu & Rajan Aggarwal & Arvind Singh & Leonardo P. Chamorro, 2016. "Effects of Freestream Turbulence in a Model Wind Turbine Wake," Energies, MDPI, vol. 9(10), pages 1-12, October.
    2. Yu-Ting Wu & Fernando Porté-Agel, 2012. "Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study," Energies, MDPI, vol. 5(12), pages 1-23, December.
    3. Majid Bastankhah & Fernando Porté-Agel, 2017. "A New Miniature Wind Turbine for Wind Tunnel Experiments. Part I: Design and Performance," Energies, MDPI, vol. 10(7), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Victor P. Stein & Hans-Jakob Kaltenbach, 2022. "Validation of a Large-Eddy Simulation Approach for Prediction of the Ground Roughness Influence on Wind Turbine Wakes," Energies, MDPI, vol. 15(7), pages 1-25, April.
    2. Antonio Crespo, 2022. "Wakes of Wind Turbines in Yaw for Wind Farm Power Optimization," Energies, MDPI, vol. 15(18), pages 1-3, September.
    3. Yunliang Li & Zhaobin Li & Zhideng Zhou & Xiaolei Yang, 2023. "Large-Eddy Simulation of Wind Turbine Wakes in Forest Terrain," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
    4. Ingrid Neunaber & Michael Hölling & Martin Obligado, 2022. "Wind Tunnel Study on the Tip Speed Ratio’s Impact on a Wind Turbine Wake Development," Energies, MDPI, vol. 15(22), pages 1-15, November.
    5. Lingkan, Elizabeth H. & Buxton, Oliver R.H., 2023. "An assessment of the scalings for the streamwise evolution of turbulent quantities in wakes produced by porous objects," Renewable Energy, Elsevier, vol. 209(C), pages 1-9.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Öztürk, Buğrahan & Hassanein, Abdelrahman & Akpolat, M Tuğrul & Abdulrahim, Anas & Perçin, Mustafa & Uzol, Oğuz, 2023. "On the wake characteristics of a model wind turbine and a porous disc: Effects of freestream turbulence intensity," Renewable Energy, Elsevier, vol. 212(C), pages 238-250.
    2. Bayron, Paul & Kelso, Richard & Chin, Rey, 2024. "Experimental investigation of tip-speed-ratio influence on horizontal-axis wind turbine wake dynamics," Renewable Energy, Elsevier, vol. 225(C).
    3. Ingrid Neunaber & Michael Hölling & Richard J. A. M. Stevens & Gerard Schepers & Joachim Peinke, 2020. "Distinct Turbulent Regions in the Wake of a Wind Turbine and Their Inflow-Dependent Locations: The Creation of a Wake Map," Energies, MDPI, vol. 13(20), pages 1-20, October.
    4. Victor P. Stein & Hans-Jakob Kaltenbach, 2022. "Validation of a Large-Eddy Simulation Approach for Prediction of the Ground Roughness Influence on Wind Turbine Wakes," Energies, MDPI, vol. 15(7), pages 1-25, April.
    5. Emmanuvel Joseph Aju & Dhanush Bhamitipadi Suresh & Yaqing Jin, 2020. "The Influence of Winglet Pitching on the Performance of a Model Wind Turbine: Aerodynamic Loads, Rotating Speed, and Wake Statistics," Energies, MDPI, vol. 13(19), pages 1-15, October.
    6. Tristan Revaz & Fernando Porté-Agel, 2021. "Large-Eddy Simulation of Wind Turbine Flows: A New Evaluation of Actuator Disk Models," Energies, MDPI, vol. 14(13), pages 1-22, June.
    7. Mou Lin & Fernando Porté-Agel, 2019. "Large-Eddy Simulation of Yawed Wind-Turbine Wakes: Comparisons with Wind Tunnel Measurements and Analytical Wake Models," Energies, MDPI, vol. 12(23), pages 1-18, November.
    8. Yu-Ting Wu & Chang-Yu Lin & Che-Ming Hsu, 2020. "An Experimental Investigation of Wake Characteristics and Power Generation Efficiency of a Small Wind Turbine under Different Tip Speed Ratios," Energies, MDPI, vol. 13(8), pages 1-19, April.
    9. Xiaolei Yang & Daniel Foti & Christopher Kelley & David Maniaci & Fotis Sotiropoulos, 2020. "Wake Statistics of Different-Scale Wind Turbines under Turbulent Boundary Layer Inflow," Energies, MDPI, vol. 13(11), pages 1-17, June.
    10. Majid Bastankhah & Fernando Porté-Agel, 2017. "A New Miniature Wind Turbine for Wind Tunnel Experiments. Part II: Wake Structure and Flow Dynamics," Energies, MDPI, vol. 10(7), pages 1-19, July.
    11. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    12. Ziyu Zhang & Peng Huang & Haocheng Sun, 2020. "A Novel Analytical Wake Model with a Cosine-Shaped Velocity Deficit," Energies, MDPI, vol. 13(13), pages 1-20, June.
    13. Zhang, Shaohai & Duan, Huanfeng & Lu, Lin & He, Ruiyang & Gao, Xiaoxia & Zhu, Songye, 2024. "Quantification of three-dimensional added turbulence intensity for the horizontal-axis wind turbine considering the wake anisotropy," Energy, Elsevier, vol. 294(C).
    14. Ahmadi, Mohammad H.B., 2019. "Influence of upstream turbulence on the wake characteristics of a tidal stream turbine," Renewable Energy, Elsevier, vol. 132(C), pages 989-997.
    15. Ge, Mingwei & Wu, Ying & Liu, Yongqian & Li, Qi, 2019. "A two-dimensional model based on the expansion of physical wake boundary for wind-turbine wakes," Applied Energy, Elsevier, vol. 233, pages 975-984.
    16. Razi, P. & Ramaprabhu, P. & Tarey, P. & Muglia, M. & Vermillion, C., 2022. "A low-order wake interaction modeling framework for the performance of ocean current turbines under turbulent conditions," Renewable Energy, Elsevier, vol. 200(C), pages 1602-1617.
    17. Shen, Wen Zhong & Lin, Jian Wei & Jiang, Yu Hang & Feng, Ju & Cheng, Li & Zhu, Wei Jun, 2023. "A novel yaw wake model for wind farm control applications," Renewable Energy, Elsevier, vol. 218(C).
    18. Ti, Zilong & Deng, Xiao Wei & Yang, Hongxing, 2020. "Wake modeling of wind turbines using machine learning," Applied Energy, Elsevier, vol. 257(C).
    19. Sina Shamsoddin & Fernando Porté-Agel, 2014. "Large Eddy Simulation of Vertical Axis Wind Turbine Wakes," Energies, MDPI, vol. 7(2), pages 1-23, February.
    20. Ge, Mingwei & Gayme, Dennice F. & Meneveau, Charles, 2021. "Large-eddy simulation of wind turbines immersed in the wake of a cube-shaped building," Renewable Energy, Elsevier, vol. 163(C), pages 1063-1077.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2763-:d:249630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.