IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p2005-d347138.html
   My bibliography  Save this article

Space Charge Accumulation at Material Interfaces in HVDC Cable Insulation Part I—Experimental Study and Charge Injection Hypothesis

Author

Listed:
  • Espen Doedens

    (Department of Electrical Engineering, Chalmers University of Technology, SE-41258 Gothenburg, Sweden
    Nexans Norway AS, 70 Knivsøveien, NO-1788 Halden, Norway)

  • E. Markus Jarvid

    (Nexans Norway AS, 70 Knivsøveien, NO-1788 Halden, Norway)

  • Raphaël Guffond

    (Nexans Research Centre (NRC), 69007 Lyon, France)

  • Yuriy V. Serdyuk

    (Department of Electrical Engineering, Chalmers University of Technology, SE-41258 Gothenburg, Sweden)

Abstract

On-site installation of accessories on extruded polymeric high voltage cables in a common practice. The procedure requires the shaping of the physical interface between the cable insulation surface and the pre-molded accessory body. On such interfaces, rough surfaces should be avoided in order to limit space charge accumulation in the insulation, which affects the cable performance by reducing insulation life-time, creating conditions for local field enhancement, and, respectively, the formation of possible breakdown path e.g. by electrical treeing. Space charge measurements on cable insulation peelings were undertaken to assess the space charge injection and accumulation on interfaces with varying degrees of surface roughness in order to improve understanding on this subject. The results of the measurements confirm the hypothesis regarding the enhancement of charge injection from rough surfaces when electric field strength exceeds a certain level. The accumulated charge density in the material is shown to strongly depend on the field strength and temperature in both polarization and subsequent depolarization measurements. These results emphasize that a bipolar charge transport model that incorporates field and temperature dependencies of charge injection, trapping, detrapping, and recombination processes needs to be adopted to accurately describe the observed electric conduction phenomena.

Suggested Citation

  • Espen Doedens & E. Markus Jarvid & Raphaël Guffond & Yuriy V. Serdyuk, 2020. "Space Charge Accumulation at Material Interfaces in HVDC Cable Insulation Part I—Experimental Study and Charge Injection Hypothesis," Energies, MDPI, vol. 13(8), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2005-:d:347138
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/2005/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/2005/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pasquale Cambareri & Carlo de Falco & Luca Di Rienzo & Paolo Seri & Gian Carlo Montanari, 2021. "Simulation and Modelling of Transient Electric Fields in HVDC Insulation Systems Based on Polarization Current Measurements," Energies, MDPI, vol. 14(24), pages 1-12, December.
    2. Marek Florkowski & Maciej Kuniewski & Paweł Zydroń, 2022. "Measurements and Analysis of Partial Discharges at HVDC Voltage with AC Components," Energies, MDPI, vol. 15(7), pages 1-11, March.
    3. Fuqiang Tian & Shuting Zhang & Chunyi Hou, 2021. "Effects of Trapping Characteristics on Space Charge and Electric Field Distributions in HVDC Cable under Electrothermal Stress," Energies, MDPI, vol. 14(5), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2005-:d:347138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.