IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2490-d781667.html
   My bibliography  Save this article

Phase Change Cooling of a Metal Hydride Reactor for Rapid Hydrogen Absorption

Author

Listed:
  • Matthew Duncan Keith

    (Mechanical Engineering Department, University of Alaska Fairbanks, Fairbanks, AK 99775, USA)

  • Vamsi Krishna Kukkapalli

    (Mechanical Engineering Department, University of Alaska Fairbanks, Fairbanks, AK 99775, USA)

  • Sunwoo Kim

    (Mechanical Engineering Department, University of Alaska Fairbanks, Fairbanks, AK 99775, USA)

Abstract

As the world is keen on cleaner and sustainable energy, hydrogen energy has the potential to be part of the green energy transition to replace fossil fuels and mitigate climate change. However, hydrogen energy storage is a difficult task since physical storage in the form of compressed gas under high pressure is associated with safety issues. Another form of hydrogen storage is material-based storage, which is the safest way to store hydrogen energy in a particulate matter, known as metal hydrides. Metal hydrides can store hydrogen at room temperature and use less volume to store the same amount of hydrogen compared to classical gas tanks. The challenges with the metal hydrides reactor are their slow charging process and the requirement of proper thermal management during the charging process. In this study, a metal hydride reactor model is developed in COMSOL Multiphysics, and the associated heat transfer simulations are performed. The main objective of this research is to optimize the cooling channel design in the metal hydride reactor, where the R-134a coolant rejects heat through both latent and sensible heat transfer. The study showed that the phase-changing coolant and varying convection coefficient along the length of tubes significantly reduce the hydrogen charging time and the peak temperature of the reactor during hydrogen absorption. The pumping power analysis for the R-134a flow was also conducted. The computation results reveal that coolant channel configurations with nine or more tube-passes require significantly large pumping power.

Suggested Citation

  • Matthew Duncan Keith & Vamsi Krishna Kukkapalli & Sunwoo Kim, 2022. "Phase Change Cooling of a Metal Hydride Reactor for Rapid Hydrogen Absorption," Energies, MDPI, vol. 15(7), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2490-:d:781667
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2490/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2490/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Ying-Wei & Lin, Chuah-Chih, 2009. "Locating road-vehicle refueling stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(5), pages 821-829, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Ran & Liu, Xiaoyue & Ou, Yi & Kiavash Fayyaz, S., 2018. "Optimizing the spatio-temporal deployment of battery electric bus system," Journal of Transport Geography, Elsevier, vol. 68(C), pages 160-168.
    2. Davidov, Sreten & Pantoš, Miloš, 2017. "Planning of electric vehicle infrastructure based on charging reliability and quality of service," Energy, Elsevier, vol. 118(C), pages 1156-1167.
    3. Kuby, Michael & Capar, Ismail & Kim, Jong-Geun, 2017. "Efficient and equitable transnational infrastructure planning for natural gas trucking in the European Union," European Journal of Operational Research, Elsevier, vol. 257(3), pages 979-991.
    4. Farzaneh Ferdowsi & Hamid Reza Maleki & Sanaz Rivaz, 2020. "Air refueling tanker allocation based on a multi-objective zero-one integer programming model," Operational Research, Springer, vol. 20(4), pages 1913-1938, December.
    5. S. A. MirHassani & R. Ebrazi, 2013. "A Flexible Reformulation of the Refueling Station Location Problem," Transportation Science, INFORMS, vol. 47(4), pages 617-628, November.
    6. Wang, Yue & Shi, Jianmai & Wang, Rui & Liu, Zhong & Wang, Ling, 2018. "Siting and sizing of fast charging stations in highway network with budget constraint," Applied Energy, Elsevier, vol. 228(C), pages 1255-1271.
    7. Liu, Haoxiang & Wang, David Z.W., 2017. "Locating multiple types of charging facilities for battery electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 30-55.
    8. Jee Eun Kang & Will Recker, 2015. "Strategic Hydrogen Refueling Station Locations with Scheduling and Routing Considerations of Individual Vehicles," Transportation Science, INFORMS, vol. 49(4), pages 767-783, November.
    9. Hwang, Seong Wook & Kweon, Sang Jin & Ventura, Jose A., 2017. "Locating alternative-fuel refueling stations on a multi-class vehicle transportation network," European Journal of Operational Research, Elsevier, vol. 261(3), pages 941-957.
    10. Yue Wang & Zhong Liu & Jianmai Shi & Guohua Wu & Rui Wang, 2018. "Joint Optimal Policy for Subsidy on Electric Vehicles and Infrastructure Construction in Highway Network," Energies, MDPI, vol. 11(9), pages 1-21, September.
    11. Böhle, Alexander, 2021. "Multi-Period Optimization of the Refuelling Infrastructure for Alternative Fuel Vehicles," Junior Management Science (JUMS), Junior Management Science e. V., vol. 6(4), pages 790-825.
    12. Monir Sabbaghtorkan & Rajan Batta & Qing He, 2022. "On the analysis of an idealized model to manage gasoline supplies in a short-notice hurricane evacuation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 911-945, September.
    13. Michael Schneider & Andreas Stenger & Dominik Goeke, 2014. "The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations," Transportation Science, INFORMS, vol. 48(4), pages 500-520, November.
    14. Scheiper, Barbara & Schiffer, Maximilian & Walther, Grit, 2019. "The flow refueling location problem with load flow control," Omega, Elsevier, vol. 83(C), pages 50-69.
    15. Hwang, Seong Wook & Kweon, Sang Jin & Ventura, Jose A., 2015. "Infrastructure development for alternative fuel vehicles on a highway road system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 170-183.
    16. Arslan, Okan & Yıldız, Barış & Karaşan, Oya Ekin, 2015. "Minimum cost path problem for Plug-in Hybrid Electric Vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 123-141.
    17. Yudai Honma & Daisuke Hasegawa & Katsuhiro Hata & Takashi Oguchi, 2024. "Locational Analysis of In-motion Wireless Power Transfer System for Long-distance Trips by Electric Vehicles: Optimal Locations and Economic Rationality in Japanese Expressway Network," Networks and Spatial Economics, Springer, vol. 24(1), pages 261-290, March.
    18. Davidov, Sreten & Pantoš, Miloš, 2017. "Stochastic expansion planning of the electric-drive vehicle charging infrastructure," Energy, Elsevier, vol. 141(C), pages 189-201.
    19. Schiffer, Maximilian & Walther, Grit, 2017. "The electric location routing problem with time windows and partial recharging," European Journal of Operational Research, Elsevier, vol. 260(3), pages 995-1013.
    20. Miao, Hongzhi & Jia, Hongfei & Li, Jiangchen & Qiu, Tony Z., 2019. "Autonomous connected electric vehicle (ACEV)-based car-sharing system modeling and optimal planning: A unified two-stage multi-objective optimization methodology," Energy, Elsevier, vol. 169(C), pages 797-818.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2490-:d:781667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.