IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i1p854-d1023698.html
   My bibliography  Save this article

Optimal Feeder Reconfiguration and Placement of Voltage Regulators in Electrical Distribution Networks Using a Linear Mathematical Model

Author

Listed:
  • Luis A. Gallego Pareja

    (Department of Electrical Engineering, State University of Londrina (UEL), Londrina 86057-970, PR, Brazil)

  • Jesús M. López-Lezama

    (Research Group in Efficient Energy Management (GIMEL), Departamento de Ingeniería Eléctrica, Universidad de Antioquia, Calle 67 No. 53-108, Medellín 050010, Colombia)

  • Oscar Gómez Carmona

    (Facultad de Tecnología, Universidad Tecnológica de Pereira, Cr 27 No 10-02, Pereira 660003, Colombia)

Abstract

Power distribution systems face continuous challenges from increased demand and lengthening of feeders, resulting in power loss augmentation and unacceptable voltage drops. Thus, to reduce technical losses and improve the voltage profile, common techniques such as reactive compensation, network reconfiguration, and placing of voltage regulators are employed. Distribution network reconfiguration (DNR) consists of modifying the system topology with the aim of minimizing power losses, enhancing voltage profile, and improving network reliability. Optimal placement of voltage regulators (OPVRs) improves the voltage profile and helps to reduce power losses. DNR and OPVRs are challenging optimization problems involving both integer and continuous decision variables. In this paper, a mixed-integer linear programming (MILP) model is presented to simultaneously solve the problems of DNR and OPVRs in radial distribution networks. The combined optimal DNR and OPVRs aim at both the minimization of power losses and the improvement of the voltage profile. This approach has not been reported in the specialized literature. The proposed MILP model may be solved through commercially available software, obtaining global optimal solutions with lower computational effort than metaheuristic techniques applied for the same purpose. Several tests were conducted on three benchmark distribution test systems to demonstrate the efficacy and applicability of the proposed approach.

Suggested Citation

  • Luis A. Gallego Pareja & Jesús M. López-Lezama & Oscar Gómez Carmona, 2023. "Optimal Feeder Reconfiguration and Placement of Voltage Regulators in Electrical Distribution Networks Using a Linear Mathematical Model," Sustainability, MDPI, vol. 15(1), pages 1-20, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:1:p:854-:d:1023698
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/854/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/854/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Josephy Dias Santos & Frederico Marques & Lina Paola Garcés Negrete & Gelson A. Andrêa Brigatto & Jesús M. López-Lezama & Nicolás Muñoz-Galeano, 2022. "A Novel Solution Method for the Distribution Network Reconfiguration Problem Based on a Search Mechanism Enhancement of the Improved Harmony Search Algorithm," Energies, MDPI, vol. 15(6), pages 1-15, March.
    2. Luis A. Gallego Pareja & Jesús M. López-Lezama & Oscar Gómez Carmona, 2022. "A Mixed-Integer Linear Programming Model for the Simultaneous Optimal Distribution Network Reconfiguration and Optimal Placement of Distributed Generation," Energies, MDPI, vol. 15(9), pages 1-26, April.
    3. Oscar Danilo Montoya & Luis Fernando Grisales-Noreña & Alberto-Jesus Perea-Moreno, 2021. "Optimal Investments in PV Sources for Grid-Connected Distribution Networks: An Application of the Discrete–Continuous Genetic Algorithm," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis A. Gallego Pareja & Jesús M. López-Lezama & Oscar Gómez Carmona, 2023. "A MILP Model for Optimal Conductor Selection and Capacitor Banks Placement in Primary Distribution Systems," Energies, MDPI, vol. 16(11), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gubbala Venkata Naga Lakshmi & Askani Jaya Laxmi & Venkataramana Veeramsetty & Surender Reddy Salkuti, 2022. "Optimal Placement of Distributed Generation Based on Power Quality Improvement Using Self-Adaptive Lévy Flight Jaya Algorithm," Clean Technol., MDPI, vol. 4(4), pages 1-13, November.
    2. Luis Fernando Grisales-Noreña & Oscar Danilo Montoya & Edward-J. Marín-García & Carlos Andres Ramos-Paja & Alberto-Jesus Perea-Moreno, 2022. "Integration of PV Distributed Generators into Electrical Networks for Investment and Energy Purchase Costs Reduction by Using a Discrete–Continuous Parallel PSO," Energies, MDPI, vol. 15(20), pages 1-20, October.
    3. Abdullah Shaheen & Ragab El-Sehiemy & Salah Kamel & Ali Selim, 2022. "Optimal Operational Reliability and Reconfiguration of Electrical Distribution Network Based on Jellyfish Search Algorithm," Energies, MDPI, vol. 15(19), pages 1-14, September.
    4. Soheil Younesi & Bahman Ahmadi & Oguzhan Ceylan & Aydogan Ozdemir, 2022. "Optimum Parallel Processing Schemes to Improve the Computation Speed for Renewable Energy Allocation and Sizing Problems," Energies, MDPI, vol. 15(24), pages 1-18, December.
    5. Wallisson C. Nogueira & Lina P. Garcés Negrete & Jesús M. López-Lezama, 2023. "Optimal Allocation and Sizing of Distributed Generation Using Interval Power Flow," Sustainability, MDPI, vol. 15(6), pages 1-24, March.
    6. Oscar Danilo Montoya & Luis Fernando Grisales-Noreña & Diego Armando Giral-Ramírez, 2022. "Optimal Placement and Sizing of PV Sources in Distribution Grids Using a Modified Gradient-Based Metaheuristic Optimizer," Sustainability, MDPI, vol. 14(6), pages 1-19, March.
    7. Daniel Sanin-Villa & Oscar Danilo Montoya & Luis Fernando Grisales-Noreña, 2023. "Material Property Characterization and Parameter Estimation of Thermoelectric Generator by Using a Master–Slave Strategy Based on Metaheuristics Techniques," Mathematics, MDPI, vol. 11(6), pages 1-19, March.
    8. Luis A. Gallego Pareja & Jesús M. López-Lezama & Oscar Gómez Carmona, 2023. "Optimal Integration of Distribution Network Reconfiguration and Conductor Selection in Power Distribution Systems via MILP," Energies, MDPI, vol. 16(19), pages 1-25, October.
    9. Min Zhu & Saber Arabi Nowdeh & Aspassia Daskalopulu, 2023. "An Improved Human-Inspired Algorithm for Distribution Network Stochastic Reconfiguration Using a Multi-Objective Intelligent Framework and Unscented Transformation," Mathematics, MDPI, vol. 11(17), pages 1-23, August.
    10. Mohammed Alqahtani & Ponnusamy Marimuthu & Veerasamy Moorthy & B. Pangedaiah & Ch. Rami Reddy & M. Kiran Kumar & Muhammad Khalid, 2023. "Investigation and Minimization of Power Loss in Radial Distribution Network Using Gray Wolf Optimization," Energies, MDPI, vol. 16(12), pages 1-15, June.
    11. Ren, Haoshan & Sun, Yongjun & Norman Tse, Chung Fai & Fan, Cheng, 2023. "Optimal packing and planning for large-scale distributed rooftop photovoltaic systems under complex shading effects and rooftop availabilities," Energy, Elsevier, vol. 274(C).
    12. Matheus Diniz Gonçalves-Leite & Edgar Manuel Carreño-Franco & Jesús M. López-Lezama, 2023. "Impact of Distributed Generation on the Effectiveness of Electric Distribution System Reconfiguration," Energies, MDPI, vol. 16(17), pages 1-20, August.
    13. Guillermo Alonso & Ricardo F. Alonso & Antonio Carlos Zambroni Zambroni De Souza & Walmir Freitas, 2022. "Enhanced Artificial Immune Systems and Fuzzy Logic for Active Distribution Systems Reconfiguration," Energies, MDPI, vol. 15(24), pages 1-18, December.
    14. Zifa Liu & Jieyu Li & Yunyang Liu & Puyang Yu & Junteng Shao, 2022. "Collaborative Optimized Operation Model of Multi-Character Distribution Network Considering Multiple Uncertain Factors and Demand Response," Energies, MDPI, vol. 15(12), pages 1-19, June.
    15. Oscar Danilo Montoya & Carlos Andrés Ramos-Paja & Luis Fernando Grisales-Noreña, 2022. "An Efficient Methodology for Locating and Sizing PV Generators in Radial Distribution Networks Using a Mixed-Integer Conic Relaxation," Mathematics, MDPI, vol. 10(15), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:1:p:854-:d:1023698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.