IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p7974-d690760.html
   My bibliography  Save this article

A Review of Model Predictive Controls Applied to Advanced Driver-Assistance Systems

Author

Listed:
  • Alessia Musa

    (Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, 10125 Torino, Italy
    Center for Automotive Research and Sustainable Mobility (CARS), Politecnico di Torino, 10125 Torino, Italy)

  • Michele Pipicelli

    (Department of Industrial Engineering, University of Naples Federico II, 80126 Napoli, Italy
    Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili (STEMS), 80125 Napoli, Italy
    Teoresi S.P.A., 10152 Torino, Italy)

  • Matteo Spano

    (Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, 10125 Torino, Italy
    Center for Automotive Research and Sustainable Mobility (CARS), Politecnico di Torino, 10125 Torino, Italy)

  • Francesco Tufano

    (Department of Industrial Engineering, University of Naples Federico II, 80126 Napoli, Italy)

  • Francesco De Nola

    (Teoresi S.P.A., 10152 Torino, Italy)

  • Gabriele Di Blasio

    (Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili (STEMS), 80125 Napoli, Italy)

  • Alfredo Gimelli

    (Department of Industrial Engineering, University of Naples Federico II, 80126 Napoli, Italy)

  • Daniela Anna Misul

    (Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, 10125 Torino, Italy
    Center for Automotive Research and Sustainable Mobility (CARS), Politecnico di Torino, 10125 Torino, Italy)

  • Gianluca Toscano

    (Teoresi S.P.A., 10152 Torino, Italy)

Abstract

Advanced Driver-Assistance Systems (ADASs) are currently gaining particular attention in the automotive field, as enablers for vehicle energy consumption, safety, and comfort enhancement. Compelling evidence is in fact provided by the variety of related studies that are to be found in the literature. Moreover, considering the actual technology readiness, larger opportunities might stem from the combination of ADASs and vehicle connectivity. Nevertheless, the definition of a suitable control system is not often trivial, especially when dealing with multiple-objective problems and dynamics complexity. In this scenario, even though diverse strategies are possible (e.g., Equivalent Consumption Minimization Strategy, Rule-based strategy, etc.), the Model Predictive Control (MPC) turned out to be among the most effective ones in fulfilling the aforementioned tasks. Hence, the proposed study is meant to produce a comprehensive review of MPCs applied to scenarios where ADASs are exploited and aims at providing the guidelines to select the appropriate strategy. More precisely, particular attention is paid to the prediction phase, the objective function formulation and the constraints. Subsequently, the interest is shifted to the combination of ADASs and vehicle connectivity to assess for how such information is handled by the MPC. The main results from the literature are presented and discussed, along with the integration of MPC in the optimal management of higher level connection and automation. Current gaps and challenges are addressed to, so as to possibly provide hints on future developments.

Suggested Citation

  • Alessia Musa & Michele Pipicelli & Matteo Spano & Francesco Tufano & Francesco De Nola & Gabriele Di Blasio & Alfredo Gimelli & Daniela Anna Misul & Gianluca Toscano, 2021. "A Review of Model Predictive Controls Applied to Advanced Driver-Assistance Systems," Energies, MDPI, vol. 14(23), pages 1-24, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7974-:d:690760
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/7974/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/7974/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antonio Capuano & Matteo Spano & Alessia Musa & Gianluca Toscano & Daniela Anna Misul, 2021. "Development of an Adaptive Model Predictive Control for Platooning Safety in Battery Electric Vehicles," Energies, MDPI, vol. 14(17), pages 1-14, August.
    2. Wang, Siyang & Lin, Xianke, 2020. "Eco-driving control of connected and automated hybrid vehicles in mixed driving scenarios," Applied Energy, Elsevier, vol. 271(C).
    3. He, Hongwen & Wang, Yunlong & Han, Ruoyan & Han, Mo & Bai, Yunfei & Liu, Qingwu, 2021. "An improved MPC-based energy management strategy for hybrid vehicles using V2V and V2I communications," Energy, Elsevier, vol. 225(C).
    4. Zeeshan Ali & Saleh Jummani & Yasin Shaikh & Hussain Bux Marri, 2015. "Analysis of nonlinear adaptive cruise control vehicle model during cut-in manoeuvre," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 20(3), pages 263-280.
    5. Ma, Fangwu & Yang, Yu & Wang, Jiawei & Liu, Zhenze & Li, Jinhang & Nie, Jiahong & Shen, Yucheng & Wu, Liang, 2019. "Predictive energy-saving optimization based on nonlinear model predictive control for cooperative connected vehicles platoon with V2V communication," Energy, Elsevier, vol. 189(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Sotelo & Antonio Favela-Contreras & Alfonso Avila & Arturo Pinto & Francisco Beltran-Carbajal & Carlos Sotelo, 2022. "A New Software-Based Optimization Technique for Embedded Latency Improvement of a Constrained MIMO MPC," Mathematics, MDPI, vol. 10(15), pages 1-19, July.
    2. Pier Giuseppe Anselma, 2022. "Dynamic Programming Based Rapid Energy Management of Hybrid Electric Vehicles with Constraints on Smooth Driving, Battery State-of-Charge and Battery State-of-Health," Energies, MDPI, vol. 15(5), pages 1-25, February.
    3. Yesid Bello & Juan Sebastian Roncancio & Toufik Azib & Diego Patino & Cherif Larouci & Moussa Boukhnifer & Nassim Rizoug & Fredy Ruiz, 2023. "Practical Nonlinear Model Predictive Control for Improving Two-Wheel Vehicle Energy Consumption," Energies, MDPI, vol. 16(4), pages 1-26, February.
    4. Maciej Ławryńczuk & Piotr M. Marusak & Patryk Chaber & Dawid Seredyński, 2022. "Initialisation of Optimisation Solvers for Nonlinear Model Predictive Control: Classical vs. Hybrid Methods," Energies, MDPI, vol. 15(7), pages 1-21, March.
    5. Pedro Bautista-Camino & Alejandro I. Barranco-Gutiérrez & Ilse Cervantes & Martin Rodríguez-Licea & Juan Prado-Olivarez & Francisco J. Pérez-Pinal, 2022. "Local Path Planning for Autonomous Vehicles Based on the Natural Behavior of the Biological Action-Perception Motion," Energies, MDPI, vol. 15(5), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jie & Wu, Xiaodong & Xu, Min & Liu, Yonggang, 2022. "Deep reinforcement learning and reward shaping based eco-driving control for automated HEVs among signalized intersections," Energy, Elsevier, vol. 251(C).
    2. Chen, Zheng & Wu, Simin & Shen, Shiquan & Liu, Yonggang & Guo, Fengxiang & Zhang, Yuanjian, 2023. "Co-optimization of velocity planning and energy management for autonomous plug-in hybrid electric vehicles in urban driving scenarios," Energy, Elsevier, vol. 263(PF).
    3. Pietro Stabile & Federico Ballo & Giorgio Previati & Giampiero Mastinu & Massimiliano Gobbi, 2023. "Eco-Driving Strategy Implementation for Ultra-Efficient Lightweight Electric Vehicles in Realistic Driving Scenarios," Energies, MDPI, vol. 16(3), pages 1-19, January.
    4. Bi, Huibo & Shang, Wen-Long & Chen, Yanyan & Wang, Kezhi & Yu, Qing & Sui, Yi, 2021. "GIS aided sustainable urban road management with a unifying queueing and neural network model," Applied Energy, Elsevier, vol. 291(C).
    5. Xin-Wei Li & Hong-Zhi Miao, 2023. "How to Incorporate Autonomous Vehicles into the Carbon Neutrality Framework of China: Legal and Policy Perspectives," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    6. Hou, Zhuoran & Guo, Jianhua & Li, Jihao & Hu, Jinchen & Sun, Wen & Zhang, Yuanjian, 2023. "Exploration the pathways of connected electric vehicle design: A vehicle-environment cooperation energy management strategy," Energy, Elsevier, vol. 271(C).
    7. Jiang, Yue & Meng, Hao & Chen, Guanpeng & Yang, Congnan & Xu, Xiaojun & Zhang, Lei & Xu, Haijun, 2022. "Differential-steering based path tracking control and energy-saving torque distribution strategy of 6WID unmanned ground vehicle," Energy, Elsevier, vol. 254(PA).
    8. Li, Haijian & Zhang, Junjie & Sun, Xiaoliang & Niu, Jun & Zhao, Xiaohua, 2022. "A survey of vehicle group behaviors simulation under a connected vehicle environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    9. Qin, Yanyan & Liu, Mingxuan & Hao, Wei, 2024. "Energy-optimal car-following model for connected automated vehicles considering traffic flow stability," Energy, Elsevier, vol. 298(C).
    10. Pi, Dawei & Xue, Pengyu & Wang, Weihua & Xie, Boyuan & Wang, Hongliang & Wang, Xianhui & Yin, Guodong, 2023. "Automotive platoon energy-saving: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    11. Li, Bin & Dong, Xujun & Wen, Jianghui, 2022. "Cooperative-driving control for mixed fleets at wireless charging sections for lane changing behaviour," Energy, Elsevier, vol. 243(C).
    12. Wan, Xin & Luo, Xiong-Lin, 2020. "Economic optimization of chemical processes based on zone predictive control with redundancy variables," Energy, Elsevier, vol. 212(C).
    13. Simin Hesami & Majid Vafaeipour & Cedric De Cauwer & Evy Rombaut & Lieselot Vanhaverbeke & Thierry Coosemans, 2023. "Dynamic Pro-Active Eco-Driving Control Framework for Energy-Efficient Autonomous Electric Mobility," Energies, MDPI, vol. 16(18), pages 1-19, September.
    14. Nie, Zifei & Farzaneh, Hooman, 2022. "Real-time dynamic predictive cruise control for enhancing eco-driving of electric vehicles, considering traffic constraints and signal phase and timing (SPaT) information, using artificial-neural-netw," Energy, Elsevier, vol. 241(C).
    15. Hu, Dong & Huang, Chao & Yin, Guodong & Li, Yangmin & Huang, Yue & Huang, Hailong & Wu, Jingda & Li, Wenfei & Xie, Hui, 2024. "A transfer-based reinforcement learning collaborative energy management strategy for extended-range electric buses with cabin temperature comfort consideration," Energy, Elsevier, vol. 290(C).
    16. Hou, Shengyan & Yin, Hai & Xu, Fuguo & Benjamín, Pla & Gao, Jinwu & Chen, Hong, 2023. "Multihorizon predictive energy optimization and lifetime management for connected fuel cell electric vehicles," Energy, Elsevier, vol. 266(C).
    17. Chen, Zheng & Gu, Hongji & Shen, Shiquan & Shen, Jiangwei, 2022. "Energy management strategy for power-split plug-in hybrid electric vehicle based on MPC and double Q-learning," Energy, Elsevier, vol. 245(C).
    18. Liu, Rui & Liu, Hui & Han, Lijin & Nie, Shida & Ruan, Shumin & Yang, Ningkang, 2023. "Predictive eco-driving strategy for hybrid electric vehicles on off-road terrain considering vehicle stability constraint," Applied Energy, Elsevier, vol. 350(C).
    19. Tian, Yang & Zhang, Yahui & Li, Hongmin & Gao, Jinwu & Swen, Austin & Wen, Guilin, 2023. "Optimal sizing and energy management of a novel dual-motor powertrain for electric vehicles," Energy, Elsevier, vol. 275(C).
    20. Yin, WanJun & Ming, ZhengFeng & Wen, Tao, 2021. "Scheduling strategy of electric vehicle charging considering different requirements of grid and users," Energy, Elsevier, vol. 232(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7974-:d:690760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.