Study of Parameters and Theory of Sucrose Dust Explosion
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Andrea Malizia & Luigi Antonio Poggi & Jean-François Ciparisse & Riccardo Rossi & Carlo Bellecci & Pasquale Gaudio, 2016. "A Review of Dangerous Dust in Fusion Reactors: from Its Creation to Its Resuspension in Case of LOCA and LOVA," Energies, MDPI, vol. 9(8), pages 1-34, July.
- Reyhane Youssefi & Tom Segers & Frederik Norman & Jörg Maier & Günter Scheffknecht, 2021. "Experimental Investigations of the Ignitability of Several Coal Dust Qualities," Energies, MDPI, vol. 14(19), pages 1-15, October.
- Robert Adamski & Dorota Siuta & Bożena Kukfisz & Michał Frydrysiak & Mirosława Prochoń, 2021. "Integration of Safety Aspects in Modeling of Superheated Steam Flash Drying of Tobacco," Energies, MDPI, vol. 14(18), pages 1-22, September.
- Bogdan Saletnik & Marcin Bajcar & Aneta Saletnik & Grzegorz Zaguła & Czesław Puchalski, 2021. "Effect of the Pyrolysis Process Applied to Waste Branches Biomass from Fruit Trees on the Calorific Value of the Biochar and Dust Explosivity," Energies, MDPI, vol. 14(16), pages 1-18, August.
- Wiesław Rybak & Wojciech Moroń & Janusz Wach, 2021. "Ignition Studies on High-Vitrinite and High-Inertinite Coals Using TGA/DSC, DTIF, EFR, and 20 L Dust Explosive Chamber," Energies, MDPI, vol. 14(12), pages 1-22, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Poggi, L.A. & Gaudio, P. & Rossi, R. & Ciparisse, J.F. & Malizia, A., 2017. "Non-invasive assessment of dust concentration and relative dustiness in a dust cloud mobilized by a controlled air inlet inside STARDUST-U facility," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 527-535.
- Adeleke, Adekunle A. & Ikubanni, Peter P. & Emmanuel, Stephen S. & Fajobi, Moses O. & Nwachukwu, Praise & Adesibikan, Ademidun A. & Odusote, Jamiu K. & Adeyemi, Emmanuel O. & Abioye, Oluwaseyi M. & Ok, 2024. "A comprehensive review on the similarity and disparity of torrefied biomass and coal properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
- Jean-François Ciparisse & Riccardo Rossi & Andrea Malizia & Pasquale Gaudio, 2018. "3D Simulation of a Loss of Vacuum Accident (LOVA) in ITER (International Thermonuclear Experimental Reactor): Evaluation of Static Pressure, Mach Number, and Friction Velocity," Energies, MDPI, vol. 11(4), pages 1-16, April.
- Dorota Siuta & Bożena Kukfisz & Aneta Kuczyńska & Piotr Tomasz Mitkowski, 2022. "Methodology for the Determination of a Process Safety Culture Index and Safety Culture Maturity Level in Industries," IJERPH, MDPI, vol. 19(5), pages 1-18, February.
- Paweł Wolny & Norbert Tuśnio & Artur Lewandowski & Filip Mikołajczyk & Sławomir Kuberski, 2022. "Formation of an Ammonium Nitrate Fuel Oil Similar Type of Explosive under Fire Conditions: Materials Based on Selected Polymers (PUR)," Energies, MDPI, vol. 15(5), pages 1-20, February.
- Donato Morea & Luigi Antonio Poggi, 2017. "An Innovative Model for the Sustainability of Investments in the Wind Energy Sector: The Use of Green Sukuk in an Italian Case Study," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 53-60.
- Adam Jan Zwierzyński & Wojciech Teper & Rafał Wiśniowski & Andrzej Gonet & Tomasz Buratowski & Tadeusz Uhl & Karol Seweryn, 2021. "Feasibility Study of Low Mass and Low Energy Consumption Drilling Devices for Future Space (Mining Surveying) Missions," Energies, MDPI, vol. 14(16), pages 1-17, August.
- Piotr Piersa & Szymon Szufa & Justyna Czerwińska & Hilal Ünyay & Łukasz Adrian & Grzegorz Wielgosinski & Andrzej Obraniak & Wiktoria Lewandowska & Marta Marczak-Grzesik & Maria Dzikuć & Zdzislawa Roma, 2021. "Pine Wood and Sewage Sludge Torrefaction Process for Production Renewable Solid Biofuels and Biochar as Carbon Carrier for Fertilizers," Energies, MDPI, vol. 14(23), pages 1-27, December.
More about this item
Keywords
sucrose dust explosion; minimum ignition energy; minimum ignition temperature; particle size; electrode discharge;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1439-:d:750920. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.