IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1410-d750375.html
   My bibliography  Save this article

Lattice Spacing, Morphology, Properties, and Quasi—In Situ Impedance of Ternary Lithium-Ion Batteries at a Low Temperature

Author

Listed:
  • Mingsai Zhang

    (College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China)

  • Ping Fu

    (College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China)

  • Junfei Wu

    (College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China)

  • Hao Wang

    (College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China)

Abstract

The study about the low-temperature performance of lithium-ion batteries (LIB) is of great significance at extreme temperatures, such as polar scientific research, space exploration, deep-sea exploration, military fields, and so on. In this study, normal devices and symmetrical devices were fabricated by ternary Li(Ni 0.5 Mn 0.3 Co 0.2 )O 2 as cathode and graphite as anode at 25 and −20 °C. The results show that the specific discharge capacity of normal device is up to 120 mAh g −1 at 1 C and 25 °C. The specific capacity and energy density at 0.2 C and −20 °C are 106.05 mAh g −1 and 376.53 mWh g −1 , respectively, which can reach 92.82% of that at 1 C and 25 °C. The value of activation energy E a of the interface reaction of the LIB is calculated to be 63.72 kJ/mol by the Arrhenius equation. When the temperature dropped from 25 to −20 °C, the lattice spacing of Li 1−x (Ni 0.5 Mn 0.3 Co 0.2 )O 2 hardly changed, while the lattice spacing (002) of graphite reduces 0.00248 Å. In addition, some cracks were observed on the charged cathode at −20 °C. We carried out quasi-in situ electrochemical impedance spectroscopy (EIS) when the voltages of normal device discharged to 3.8, 3.6, 3.4, 3.2, and 3.0 V. Unlike the relationship of voltage–resistance at 25 °C, the values of the series resistance (R s ), charge transfer resistance (R ct ), and ion transfer resistance (R it ) gradually decrease as the voltage decreases at −20 °C. Compared with the resistance of the symmetrical device based on the anode at 25 °C, the values of R s and R it at −20 °C both obviously increase. The main reason of performance degradation for normal device at −20 °C is large ion transfer resistance and the decrease of lattice spacing of the graphite (002).

Suggested Citation

  • Mingsai Zhang & Ping Fu & Junfei Wu & Hao Wang, 2022. "Lattice Spacing, Morphology, Properties, and Quasi—In Situ Impedance of Ternary Lithium-Ion Batteries at a Low Temperature," Energies, MDPI, vol. 15(4), pages 1-10, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1410-:d:750375
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1410/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1410/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jun Liu & Zhenan Bao & Yi Cui & Eric J. Dufek & John B. Goodenough & Peter Khalifah & Qiuyan Li & Bor Yann Liaw & Ping Liu & Arumugam Manthiram & Y. Shirley Meng & Venkat R. Subramanian & Michael F. T, 2019. "Pathways for practical high-energy long-cycling lithium metal batteries," Nature Energy, Nature, vol. 4(3), pages 180-186, March.
    2. Jiang, Jiuchun & Ruan, Haijun & Sun, Bingxiang & Wang, Leyi & Gao, Wenzhong & Zhang, Weige, 2018. "A low-temperature internal heating strategy without lifetime reduction for large-size automotive lithium-ion battery pack," Applied Energy, Elsevier, vol. 230(C), pages 257-266.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Xingyi & Li, Guangzhe & Zhang, Ruihan & Esan, Oladapo Christopher & Huo, Xiaoyu & Wu, Qixing & An, Liang, 2024. "Operation of rechargeable metal-ion batteries in low-temperature environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Zedong Zhao & Rong Wang & Chengxin Peng & Wuji Chen & Tianqi Wu & Bo Hu & Weijun Weng & Ying Yao & Jiaxi Zeng & Zhihong Chen & Peiying Liu & Yicheng Liu & Guisheng Li & Jia Guo & Hongbin Lu & Zaiping , 2021. "Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    3. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Matthew Sadd & Shizhao Xiong & Jacob R. Bowen & Federica Marone & Aleksandar Matic, 2023. "Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Hyeokjin Kwon & Hyun-Ji Choi & Jung-kyu Jang & Jinhong Lee & Jinkwan Jung & Wonjun Lee & Youngil Roh & Jaewon Baek & Dong Jae Shin & Ju-Hyuk Lee & Nam-Soon Choi & Ying Shirley Meng & Hee-Tak Kim, 2023. "Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li-metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Bingxiang Sun & Xianjie Qi & Donglin Song & Haijun Ruan, 2023. "Review of Low-Temperature Performance, Modeling and Heating for Lithium-Ion Batteries," Energies, MDPI, vol. 16(20), pages 1-37, October.
    7. Guangli Zheng & Tong Yan & Yifeng Hong & Xiaona Zhang & Jianying Wu & Zhenxing Liang & Zhiming Cui & Li Du & Huiyu Song, 2023. "A non-Newtonian fluid quasi-solid electrolyte designed for long life and high safety Li-O2 batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Yuxuan Xiang & Mingming Tao & Xiaoxuan Chen & Peizhao Shan & Danhui Zhao & Jue Wu & Min Lin & Xiangsi Liu & Huajin He & Weimin Zhao & Yonggang Hu & Junning Chen & Yuexing Wang & Yong Yang, 2023. "Gas induced formation of inactive Li in rechargeable lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Zhi Chang & Huijun Yang & Anqiang Pan & Ping He & Haoshen Zhou, 2022. "An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    11. Jian, Jiting & Zhang, Zeping & Wang, Shixue & Gong, Jinke, 2023. "Analysis of control strategies in alternating current preheating of lithium-ion cell," Applied Energy, Elsevier, vol. 333(C).
    12. Tian, Jiaqiang & Fan, Yuan & Pan, Tianhong & Zhang, Xu & Yin, Jianning & Zhang, Qingping, 2024. "A critical review on inconsistency mechanism, evaluation methods and improvement measures for lithium-ion battery energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    13. Jung-Hui Kim & Ju-Myung Kim & Seok-Kyu Cho & Nag-Young Kim & Sang-Young Lee, 2022. "Redox-homogeneous, gel electrolyte-embedded high-mass-loading cathodes for high-energy lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Yan Zhao & Tianhong Zhou & Timur Ashirov & Mario El Kazzi & Claudia Cancellieri & Lars P. H. Jeurgens & Jang Wook Choi & Ali Coskun, 2022. "Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Qin, Yudi & Xu, Zhoucheng & Xiao, Shengran & Gao, Ming & Bai, Jian & Liebig, Dorothea & Lu, Languang & Han, Xuebing & Li, Yalun & Du, Jiuyu & Ouyang, Minggao, 2023. "Temperature consistency–oriented rapid heating strategy combining pulsed operation and external thermal management for lithium-ion batteries," Applied Energy, Elsevier, vol. 335(C).
    16. Liu, Haiping & Li, Huajiao & Qi, Yajie & An, Pengli & Shi, Jianglan & Liu, Yanxin, 2021. "Identification of high-risk agents and relationships in nickel, cobalt, and lithium trade based on resource-dependent networks," Resources Policy, Elsevier, vol. 74(C).
    17. Minglei Mao & Xiao Ji & Qiyu Wang & Zejing Lin & Meiying Li & Tao Liu & Chengliang Wang & Yong-Sheng Hu & Hong Li & Xuejie Huang & Liquan Chen & Liumin Suo, 2023. "Anion-enrichment interface enables high-voltage anode-free lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. V. Reisecker & F. Flatscher & L. Porz & C. Fincher & J. Todt & I. Hanghofer & V. Hennige & M. Linares-Moreau & P. Falcaro & S. Ganschow & S. Wenner & Y.-M. Chiang & J. Keckes & J. Fleig & D. Rettenwan, 2023. "Effect of pulse-current-based protocols on the lithium dendrite formation and evolution in all-solid-state batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Yun Su & Xiaohui Rong & Ang Gao & Yuan Liu & Jianwei Li & Minglei Mao & Xingguo Qi & Guoliang Chai & Qinghua Zhang & Liumin Suo & Lin Gu & Hong Li & Xuejie Huang & Liquan Chen & Binyuan Liu & Yong-She, 2022. "Rational design of a topological polymeric solid electrolyte for high-performance all-solid-state alkali metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    20. Qian Wu & Mandi Fang & Shizhe Jiao & Siyuan Li & Shichao Zhang & Zeyu Shen & Shulan Mao & Jiale Mao & Jiahui Zhang & Yuanzhong Tan & Kang Shen & Jiaxing Lv & Wei Hu & Yi He & Yingying Lu, 2023. "Phase regulation enabling dense polymer-based composite electrolytes for solid-state lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1410-:d:750375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.