IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1350-d748442.html
   My bibliography  Save this article

Electricity Pattern Analysis by Clustering Domestic Load Profiles Using Discrete Wavelet Transform

Author

Listed:
  • Senfeng Cen

    (Department of Computer Engineering, Chonnam National University, Yeosu 59626, Korea)

  • Jae Hung Yoo

    (Department of Computer Engineering, Chonnam National University, Yeosu 59626, Korea)

  • Chang Gyoon Lim

    (Department of Computer Engineering, Chonnam National University, Yeosu 59626, Korea)

Abstract

Energy demand has grown explosively in recent years, leading to increased attention of energy efficiency (EE) research. Demand response (DR) programs were designed to help power management entities meet energy balance and change end-user electricity usage. Advanced real-time meters (RTM) collect a large amount of fine-granular electric consumption data, which contain valuable information. Understanding the energy consumption patterns for different end users can support demand side management (DSM). This study proposed clustering algorithms to segment consumers and obtain the representative load patterns based on diurnal load profiles. First, the proposed method uses discrete wavelet transform (DWT) to extract features from daily electricity consumption data. Second, the extracted features are reconstructed using a statistical method, combined with Pearson’s correlation coefficient and principal component analysis (PCA) for dimensionality reduction. Lastly, three clustering algorithms are employed to segment daily load curves and select the most appropriate algorithm. We experimented our method on the Manhattan dataset and the results indicated that clustering algorithms, combined with discrete wavelet transform, improve the clustering performance. Additionally, we discussed the clustering result and load pattern analysis of the dataset with respect to the electricity pattern.

Suggested Citation

  • Senfeng Cen & Jae Hung Yoo & Chang Gyoon Lim, 2022. "Electricity Pattern Analysis by Clustering Domestic Load Profiles Using Discrete Wavelet Transform," Energies, MDPI, vol. 15(4), pages 1-18, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1350-:d:748442
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1350/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1350/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luo, Zhe & Hong, SeungHo & Ding, YueMin, 2019. "A data mining-driven incentive-based demand response scheme for a virtual power plant," Applied Energy, Elsevier, vol. 239(C), pages 549-559.
    2. Chicco, Gianfranco, 2012. "Overview and performance assessment of the clustering methods for electrical load pattern grouping," Energy, Elsevier, vol. 42(1), pages 68-80.
    3. Bouveyron, C. & Girard, S. & Schmid, C., 2007. "High-dimensional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 502-519, September.
    4. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    5. Rajabi, Amin & Eskandari, Mohsen & Ghadi, Mojtaba Jabbari & Li, Li & Zhang, Jiangfeng & Siano, Pierluigi, 2020. "A comparative study of clustering techniques for electrical load pattern segmentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    6. J. A. Hartigan & M. A. Wong, 1979. "A K‐Means Clustering Algorithm," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(1), pages 100-108, March.
    7. Dileep, G., 2020. "A survey on smart grid technologies and applications," Renewable Energy, Elsevier, vol. 146(C), pages 2589-2625.
    8. Ioannis Panapakidis & Nikolaos Asimopoulos & Athanasios Dagoumas & Georgios C. Christoforidis, 2017. "An Improved Fuzzy C-Means Algorithm for the Implementation of Demand Side Management Measures," Energies, MDPI, vol. 10(9), pages 1-42, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sunwoo Jeong & Akeem Bayo Kareem & Sungwook Song & Jang-Wook Hur, 2023. "ANN-Based Reliability Enhancement of SMPS Aluminum Electrolytic Capacitors in Cold Environments," Energies, MDPI, vol. 16(16), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    2. Chongchong Xu & Zhicheng Liao & Chaojie Li & Xiaojun Zhou & Renyou Xie, 2022. "Review on Interpretable Machine Learning in Smart Grid," Energies, MDPI, vol. 15(12), pages 1-31, June.
    3. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    4. Wadim Strielkowski & Andrey Vlasov & Kirill Selivanov & Konstantin Muraviev & Vadim Shakhnov, 2023. "Prospects and Challenges of the Machine Learning and Data-Driven Methods for the Predictive Analysis of Power Systems: A Review," Energies, MDPI, vol. 16(10), pages 1-31, May.
    5. Mitra, Somalee & Chakraborty, Basab & Mitra, Pabitra, 2024. "Smart meter data analytics applications for secure, reliable and robust grid system: Survey and future directions," Energy, Elsevier, vol. 289(C).
    6. Michalakopoulos, Vasilis & Sarmas, Elissaios & Papias, Ioannis & Skaloumpakas, Panagiotis & Marinakis, Vangelis & Doukas, Haris, 2024. "A machine learning-based framework for clustering residential electricity load profiles to enhance demand response programs," Applied Energy, Elsevier, vol. 361(C).
    7. Fang, Hongliang & Wang, Yan-Wu & Xiao, Jiang-Wen & Cui, Shichang & Qin, Zhaoyu, 2021. "A new mining framework with piecewise symbolic spatial clustering," Applied Energy, Elsevier, vol. 298(C).
    8. Xin Yao & Yuanyuan Cheng & Li Zhou & Malin Song, 2022. "Green efficiency performance analysis of the logistics industry in China: based on a kind of machine learning methods," Annals of Operations Research, Springer, vol. 308(1), pages 727-752, January.
    9. Barja-Martinez, Sara & Aragüés-Peñalba, Mònica & Munné-Collado, Íngrid & Lloret-Gallego, Pau & Bullich-Massagué, Eduard & Villafafila-Robles, Roberto, 2021. "Artificial intelligence techniques for enabling Big Data services in distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    10. Santiago Bañales & Raquel Dormido & Natividad Duro, 2021. "Smart Meters Time Series Clustering for Demand Response Applications in the Context of High Penetration of Renewable Energy Resources," Energies, MDPI, vol. 14(12), pages 1-22, June.
    11. Zhang, Dongdong & Li, Chunjiao & Goh, Hui Hwang & Ahmad, Tanveer & Zhu, Hongyu & Liu, Hui & Wu, Thomas, 2022. "A comprehensive overview of modeling approaches and optimal control strategies for cyber-physical resilience in power systems," Renewable Energy, Elsevier, vol. 189(C), pages 1383-1406.
    12. Charles Bouveyron & Julien Jacques, 2011. "Model-based clustering of time series in group-specific functional subspaces," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(4), pages 281-300, December.
    13. Xavier Serrano-Guerrero & Guillermo Escrivá-Escrivá & Santiago Luna-Romero & Jean-Michel Clairand, 2020. "A Time-Series Treatment Method to Obtain Electrical Consumption Patterns for Anomalies Detection Improvement in Electrical Consumption Profiles," Energies, MDPI, vol. 13(5), pages 1-23, February.
    14. Joseph Ndong & Ted Soubdhan, 2022. "Extracting Statistical Properties of Solar and Photovoltaic Power Production for the Scope of Building a Sophisticated Forecasting Framework," Forecasting, MDPI, vol. 5(1), pages 1-21, December.
    15. Xu, Jing & Wang, Xiaoying & Gu, Yujiong & Ma, Suxia, 2023. "A data-based day-ahead scheduling optimization approach for regional integrated energy systems with varying operating conditions," Energy, Elsevier, vol. 283(C).
    16. Carlos Carrasco-Farré, 2022. "The fingerprints of misinformation: how deceptive content differs from reliable sources in terms of cognitive effort and appeal to emotions," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-18, December.
    17. Felix Mbuga & Cristina Tortora, 2021. "Spectral Clustering of Mixed-Type Data," Stats, MDPI, vol. 5(1), pages 1-11, December.
    18. Zhao, Qian & Wang, Lu & Stan, Sebastian-Emanuel & Mirza, Nawazish, 2024. "Can artificial intelligence help accelerate the transition to renewable energy?," Energy Economics, Elsevier, vol. 134(C).
    19. Regad, L. & Guyon, F. & Maupetit, J. & Tufféry, P. & Camproux, A.C., 2008. "A Hidden Markov Model applied to the protein 3D structure analysis," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3198-3207, February.
    20. Cathy Maugis & Gilles Celeux & Marie-Laure Martin-Magniette, 2009. "Variable Selection for Clustering with Gaussian Mixture Models," Biometrics, The International Biometric Society, vol. 65(3), pages 701-709, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1350-:d:748442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.