IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p5856-d886663.html
   My bibliography  Save this article

Short-Term Load Forecasting on Individual Consumers

Author

Listed:
  • João Victor Jales Melo

    (Postgraduate Program in Electrical Engineering, Federal University of Campina Grande, Campina Grande 58428-830, Brazil)

  • George Rossany Soares Lira

    (Electrical Engineering Department, Federal University of Campina Grande, Campina Grande 58428-830, Brazil)

  • Edson Guedes Costa

    (Electrical Engineering Department, Federal University of Campina Grande, Campina Grande 58428-830, Brazil)

  • Antonio F. Leite Neto

    (Postgraduate Program in Electrical Engineering, Federal University of Campina Grande, Campina Grande 58428-830, Brazil)

  • Iago B. Oliveira

    (Postgraduate Program in Electrical Engineering, Federal University of Campina Grande, Campina Grande 58428-830, Brazil)

Abstract

Maintaining stability and control over the electric system requires increasing information about the consumers’ profiling due to changes in the form of electricity generation and consumption. To overcome this trouble, short-term load forecasting (STLF) on individual consumers gained importance in the last years. Nonetheless, predicting the profile of an individual consumer is a difficult task. The main challenge lies in the uncertainty related to the individual consumption profile, which increases forecasting errors. Thus, this paper aims to implement a load predictive model focused on individual consumers taking into account its randomness. For this purpose, a methodology is proposed to determine and select predictive features for individual STLF. The load forecasting of an individual consumer is simulated based on the four main machine learning techniques used in the literature. A 2.73% reduction in the forecast error is obtained after the correct selection of the predictive features. Compared to the baseline model (persistent forecasting method), the error is reduced by up to 19.8%. Among the techniques analyzed, support vector regression (SVR) showed the smallest errors (8.88% and 9.31%).

Suggested Citation

  • João Victor Jales Melo & George Rossany Soares Lira & Edson Guedes Costa & Antonio F. Leite Neto & Iago B. Oliveira, 2022. "Short-Term Load Forecasting on Individual Consumers," Energies, MDPI, vol. 15(16), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5856-:d:886663
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/5856/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/5856/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jain, Rishee K. & Smith, Kevin M. & Culligan, Patricia J. & Taylor, John E., 2014. "Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy," Applied Energy, Elsevier, vol. 123(C), pages 168-178.
    2. Jonathan Roth & Jayashree Chadalawada & Rishee K. Jain & Clayton Miller, 2021. "Uncertainty Matters: Bayesian Probabilistic Forecasting for Residential Smart Meter Prediction, Segmentation, and Behavioral Measurement and Verification," Energies, MDPI, vol. 14(5), pages 1-22, March.
    3. Nasir Ayub & Muhammad Irfan & Muhammad Awais & Usman Ali & Tariq Ali & Mohammed Hamdi & Abdullah Alghamdi & Fazal Muhammad, 2020. "Big Data Analytics for Short and Medium-Term Electricity Load Forecasting Using an AI Techniques Ensembler," Energies, MDPI, vol. 13(19), pages 1-21, October.
    4. Athanasios Ioannis Arvanitidis & Dimitrios Bargiotas & Aspassia Daskalopulu & Dimitrios Kontogiannis & Ioannis P. Panapakidis & Lefteri H. Tsoukalas, 2022. "Clustering Informed MLP Models for Fast and Accurate Short-Term Load Forecasting," Energies, MDPI, vol. 15(4), pages 1-14, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neilson Luniere Vilaça & Marly Guimarães Fernandes Costa & Cicero Ferreira Fernandes Costa Filho, 2023. "A Hybrid Deep Neural Network Architecture for Day-Ahead Electricity Forecasting: Post-COVID Paradigm," Energies, MDPI, vol. 16(8), pages 1-14, April.
    2. Xiao, Liye & Shao, Wei & Liang, Tulu & Wang, Chen, 2016. "A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting," Applied Energy, Elsevier, vol. 167(C), pages 135-153.
    3. Liu, Che & Sun, Bo & Zhang, Chenghui & Li, Fan, 2020. "A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine," Applied Energy, Elsevier, vol. 275(C).
    4. Xavier Serrano-Guerrero & Guillermo Escrivá-Escrivá & Santiago Luna-Romero & Jean-Michel Clairand, 2020. "A Time-Series Treatment Method to Obtain Electrical Consumption Patterns for Anomalies Detection Improvement in Electrical Consumption Profiles," Energies, MDPI, vol. 13(5), pages 1-23, February.
    5. Ma, Jun & Cheng, Jack C.P., 2016. "Identifying the influential features on the regional energy use intensity of residential buildings based on Random Forests," Applied Energy, Elsevier, vol. 183(C), pages 193-201.
    6. Li, Shuangqi & He, Hongwen & Li, Jianwei, 2019. "Big data driven lithium-ion battery modeling method based on SDAE-ELM algorithm and data pre-processing technology," Applied Energy, Elsevier, vol. 242(C), pages 1259-1273.
    7. Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    8. Nutkiewicz, Alex & Yang, Zheng & Jain, Rishee K., 2018. "Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow," Applied Energy, Elsevier, vol. 225(C), pages 1176-1189.
    9. Roth, Jonathan & Martin, Amory & Miller, Clayton & Jain, Rishee K., 2020. "SynCity: Using open data to create a synthetic city of hourly building energy estimates by integrating data-driven and physics-based methods," Applied Energy, Elsevier, vol. 280(C).
    10. Zhang, Yue & Farnoosh, Arash, 2019. "Analyzing the dynamic impact of electricity futures on revenue and risk of renewable energy in China," Energy Policy, Elsevier, vol. 132(C), pages 678-690.
    11. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & Pep Salas & José Matas, 2020. "A Comprehensive Model for the Design of a Microgrid under Regulatory Constraints Using Synthetical Data Generation and Stochastic Optimization," Energies, MDPI, vol. 13(21), pages 1-26, October.
    12. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    13. Ahmad, Tanveer & Chen, Huanxin, 2019. "Deep learning for multi-scale smart energy forecasting," Energy, Elsevier, vol. 175(C), pages 98-112.
    14. Jallal, Mohammed Ali & González-Vidal, Aurora & Skarmeta, Antonio F. & Chabaa, Samira & Zeroual, Abdelouhab, 2020. "A hybrid neuro-fuzzy inference system-based algorithm for time series forecasting applied to energy consumption prediction," Applied Energy, Elsevier, vol. 268(C).
    15. Kofi Afrifa Agyeman & Gyeonggak Kim & Hoonyeon Jo & Seunghyeon Park & Sekyung Han, 2020. "An Ensemble Stochastic Forecasting Framework for Variable Distributed Demand Loads," Energies, MDPI, vol. 13(10), pages 1-20, May.
    16. Kwonsik Song & Kyle Anderson & SangHyun Lee & Kaitlin T. Raimi & P. Sol Hart, 2020. "Non-Invasive Behavioral Reference Group Categorization Considering Temporal Granularity and Aggregation Level of Energy Use Data," Energies, MDPI, vol. 13(14), pages 1-21, July.
    17. Dana-Mihaela Petroșanu & George Căruțașu & Nicoleta Luminița Căruțașu & Alexandru Pîrjan, 2019. "A Review of the Recent Developments in Integrating Machine Learning Models with Sensor Devices in the Smart Buildings Sector with a View to Attaining Enhanced Sensing, Energy Efficiency, and Optimal B," Energies, MDPI, vol. 12(24), pages 1-64, December.
    18. Guglielmina Mutani & Valeria Todeschi & Simone Beltramino, 2020. "Energy Consumption Models at Urban Scale to Measure Energy Resilience," Sustainability, MDPI, vol. 12(14), pages 1-31, July.
    19. Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
    20. Chao Ding & Nan Zhou, 2020. "Using Residential and Office Building Archetypes for Energy Efficiency Building Solutions in an Urban Scale: A China Case Study," Energies, MDPI, vol. 13(12), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5856-:d:886663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.