IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p775-d730228.html
   My bibliography  Save this article

Applications, Operational Architectures and Development of Virtual Power Plants as a Strategy to Facilitate the Integration of Distributed Energy Resources

Author

Listed:
  • Juan C. Sarmiento-Vintimilla

    (Department of Electrical Engineering, University of the Basque Country UPV-EHU, 48013 Bilbao, Spain)

  • Esther Torres

    (Department of Electrical Engineering, University of the Basque Country UPV-EHU, 48013 Bilbao, Spain)

  • Dunixe Marene Larruskain

    (Department of Electrical Engineering, University of the Basque Country UPV-EHU, 48013 Bilbao, Spain)

  • María José Pérez-Molina

    (Department of Electrical Engineering, University of the Basque Country UPV-EHU, 48013 Bilbao, Spain)

Abstract

In this article, we focus on the development and scope of virtual power plants (VPPs) as a strategy to facilitate the integration of distributed energy resources (DERs) in the power system. Firstly, the concepts about VPPs and their scope and limitations are introduced. Secondly, smart management systems for the integration of DERs are considered and a scheme of DER management through a bottom-up strategy is proposed. Then, we analyze the coordination of VPPs with the system operators and their commercial integration in the electricity markets. Finally, the challenges that must be overcome to achieve the large-scale implementation of VPPs in the power system are identified and discussed.

Suggested Citation

  • Juan C. Sarmiento-Vintimilla & Esther Torres & Dunixe Marene Larruskain & María José Pérez-Molina, 2022. "Applications, Operational Architectures and Development of Virtual Power Plants as a Strategy to Facilitate the Integration of Distributed Energy Resources," Energies, MDPI, vol. 15(3), pages 1-28, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:775-:d:730228
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/775/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/775/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Konstantinos Oureilidis & Kyriaki-Nefeli Malamaki & Konstantinos Gallos & Achilleas Tsitsimelis & Christos Dikaiakos & Spyros Gkavanoudis & Milos Cvetkovic & Juan Manuel Mauricio & Jose Maria Maza Ort, 2020. "Ancillary Services Market Design in Distribution Networks: Review and Identification of Barriers," Energies, MDPI, vol. 13(4), pages 1-44, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Comden, Joshua & Wang, Jing & Bernstein, Andrey, 2023. "Adaptive primal–dual control for distributed energy resource management," Applied Energy, Elsevier, vol. 351(C).
    2. Hui Sun & Yanan Dou & Shubo Hu & Zhengnan Gao & Zhonghui Wang & Peng Yuan, 2023. "Day-Ahead Bidding Strategy of a Virtual Power Plant with Multi-Level Electric Energy Interaction in China," Energies, MDPI, vol. 16(19), pages 1-27, September.
    3. Zhao, Kaifang & Qiu, Kai & Yan, Jian & Shaker, Mir Pasha, 2023. "Technical and economic operation of VPPs based on competitive bi–level negotiations," Energy, Elsevier, vol. 282(C).
    4. Lau, Jat-Syu & Jiang, Yihuo & Li, Ziyuan & Qian, Qian, 2023. "Stochastic trading of storage systems in short term electricity markets considering intraday demand response market," Energy, Elsevier, vol. 280(C).
    5. Itxaso Aranzabal & Julen Gomez-Cornejo & Iraide López & Ander Zubiria & Javier Mazón & Ane Feijoo-Arostegui & Haizea Gaztañaga, 2023. "Optimal Management of an Energy Community with PV and Battery-Energy-Storage Systems," Energies, MDPI, vol. 16(2), pages 1-23, January.
    6. Bianca Goia & Tudor Cioara & Ionut Anghel, 2022. "Virtual Power Plant Optimization in Smart Grids: A Narrative Review," Future Internet, MDPI, vol. 14(5), pages 1-22, April.
    7. Lucas Feksa Ramos & Luciane Neves Canha & Josue Campos do Prado & Leonardo Rodrigues Araujo Xavier de Menezes, 2022. "A Novel Virtual Power Plant Uncertainty Modeling Framework Using Unscented Transform," Energies, MDPI, vol. 15(10), pages 1-13, May.
    8. Elias Carayannis & Pantelis Kostis & Hasan Dinçer & Serhat Yüksel, 2022. "Balanced-Scorecard-Based Evaluation of Knowledge-Oriented Competencies of Distributed Energy Investments," Energies, MDPI, vol. 15(21), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rancilio, G. & Rossi, A. & Falabretti, D. & Galliani, A. & Merlo, M., 2022. "Ancillary services markets in europe: Evolution and regulatory trade-offs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Theofilos A. Papadopoulos & Kalliopi D. Pippi & Georgios A. Barzegkar-Ntovom & Eleftherios O. Kontis & Angelos I. Nousdilis & Christos L. Athanasiadis & Georgios C. Kryonidis, 2023. "Validation of a Holistic System for Operational Analysis and Provision of Ancillary Services in Active Distribution Networks," Energies, MDPI, vol. 16(6), pages 1-27, March.
    3. Kalyani Makarand Kurundkar & Geetanjali Abhijit Vaidya, 2023. "Stochastic Security-Constrained Economic Dispatch of Load-Following and Contingency Reserves Ancillary Service Using a Grid-Connected Microgrid during Uncertainty," Energies, MDPI, vol. 16(6), pages 1-25, March.
    4. Hu, Qian & Zhu, Ziqing & Bu, Siqi & Wing Chan, Ka & Li, Fangxing, 2021. "A multi-market nanogrid P2P energy and ancillary service trading paradigm: Mechanisms and implementations," Applied Energy, Elsevier, vol. 293(C).
    5. Ricardo Silva & Everton Alves & Ricardo Ferreira & José Villar & Clara Gouveia, 2021. "Characterization of TSO and DSO Grid System Services and TSO-DSO Basic Coordination Mechanisms in the Current Decarbonization Context," Energies, MDPI, vol. 14(15), pages 1-30, July.
    6. David Granados-Lieberman, 2020. "Global Harmonic Parameters for Estimation of Power Quality Indices: An Approach for PMUs," Energies, MDPI, vol. 13(9), pages 1-17, May.
    7. Nemanja Mišljenović & Matej Žnidarec & Goran Knežević & Damir Šljivac & Andreas Sumper, 2023. "A Review of Energy Management Systems and Organizational Structures of Prosumers," Energies, MDPI, vol. 16(7), pages 1-32, March.
    8. Kotarela, F. & Kyritsis, A. & Papanikolaou, N. & Kalogirou, S.A., 2021. "Enhanced nZEB concept incorporating a sustainable Grid Support Scheme," Renewable Energy, Elsevier, vol. 169(C), pages 714-725.
    9. Kontis, Eleftherios O. & Rodríguez del Nozal, Alvaro & Dimoulias, Stelios C. & Mauricio, Juan M., 2024. "Dynamic equivalent model of active distribution networks providing frequency-related ancillary services to the transmission system," Applied Energy, Elsevier, vol. 367(C).
    10. Pedro, Andressa & Krutnik, Mikolaj & Yadack, Van Malcolm & Pereira, Lucas & Morais, Hugo, 2023. "Opportunities and challenges for small-scale flexibility in European electricity markets," Utilities Policy, Elsevier, vol. 80(C).
    11. Marios-Charilaos Sousounis & Epameinondas (Nondas) Floros & Fotios-Konstantinos Paterakis & Christos Dikaiakos & Ioannis Moraitis, 2023. "Voltage Control Market Integration: Technical and Regulatory Challenges for the Greek Electricity Market," Energies, MDPI, vol. 16(5), pages 1-16, February.
    12. Luigi Viola & Saeed Nordin & Daniel Dotta & Mohammad Reza Hesamzadeh & Ross Baldick & Damian Flynn, 2023. "Ancillary Services in Power System Transition Toward a 100% Non-Fossil Future: Market Design Challenges in the United States and Europe," Papers 2311.02090, arXiv.org.
    13. Menghwar, Mohan & Yan, Jie & Chi, Yongning & Asim Amin, M. & Liu, Yongqian, 2024. "A market-based real-time algorithm for congestion alleviation incorporating EV demand response in active distribution networks," Applied Energy, Elsevier, vol. 356(C).
    14. Fco. Javier Zarco-Soto & Pedro J. Zarco-Periñán & Jose L. Martínez-Ramos, 2021. "Centralized Control of Distribution Networks with High Penetration of Renewable Energies," Energies, MDPI, vol. 14(14), pages 1-13, July.
    15. Frauke Oest & Malin Radtke & Marita Blank-Babazadeh & Stefanie Holly & Sebastian Lehnhoff, 2021. "Evaluation of Communication Infrastructures for Distributed Optimization of Virtual Power Plant Schedules," Energies, MDPI, vol. 14(5), pages 1-20, February.
    16. Paolo Scarabaggio & Raffaele Carli & Graziana Cavone & Mariagrazia Dotoli, 2020. "Smart Control Strategies for Primary Frequency Regulation through Electric Vehicles: A Battery Degradation Perspective," Energies, MDPI, vol. 13(17), pages 1-19, September.
    17. Giuseppe Fusco & Mario Russo, 2024. "Local DER Control with Reduced Loop Interactions in Active Distribution Networks," Energies, MDPI, vol. 17(9), pages 1-20, April.
    18. Silveira, Jose Ronaldo & Brandao, Danilo Iglesias & Fernandes, Nicolas T.D. & Uturbey, Wadaed & Cardoso, Braz, 2021. "Multifunctional dispatchable microgrids," Applied Energy, Elsevier, vol. 282(PA).
    19. Pavlos Papageorgiou & Konstantinos Oureilidis & Anna Tsakiri & Georgios Christoforidis, 2023. "A Modified Decentralized Droop Control Method to Eliminate Battery Short-Term Operation in a Hybrid Supercapacitor/Battery Energy Storage System," Energies, MDPI, vol. 16(6), pages 1-21, March.
    20. Sevdari, Kristian & Calearo, Lisa & Andersen, Peter Bach & Marinelli, Mattia, 2022. "Ancillary services and electric vehicles: An overview from charging clusters and chargers technology perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:775-:d:730228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.