IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v226y2018icp905-915.html
   My bibliography  Save this article

Cooperative game theory and last addition method in the allocation of firm energy rights

Author

Listed:
  • Faria, Victor. A.D.
  • de Queiroz, Anderson Rodrigo
  • Lima, Luana M.M.
  • Lima, José W.M.

Abstract

The firm energy rights of a hydro plant is a parameter used in some electricity markets to define the maximum amount of energy that a power plant can trade through contracts. In a centralized dispatch scheme, the coordinated operation of the hydro plants generates a synergetic gain in the system firm energy, in this setting, a question that often arises is how to fairly allocate this energy among each hydro plant. This work proposes a formulation to compute the firm energy rights of hydro plants using cooperative game theory and the last addition allocation method. The main goal is to integrate the interests of hydro agents with the needs of the regulatory agencies, searching in the core of the game for solutions that give the right incentives to the optimal system development. In order to make simulations of real instances possible, it is proposed a reformulation of the traditional mixed integer linear programming model that computes the core constraints, which induces a significant speed-up of the algorithm solution time. It is shown an application of the proposed methodology to a real instance representing the Brazilian electric power system.

Suggested Citation

  • Faria, Victor. A.D. & de Queiroz, Anderson Rodrigo & Lima, Luana M.M. & Lima, José W.M., 2018. "Cooperative game theory and last addition method in the allocation of firm energy rights," Applied Energy, Elsevier, vol. 226(C), pages 905-915.
  • Handle: RePEc:eee:appene:v:226:y:2018:i:c:p:905-915
    DOI: 10.1016/j.apenergy.2018.06.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918309346
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.06.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Queiroz, Anderson Rodrigo, 2016. "Stochastic hydro-thermal scheduling optimization: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 382-395.
    2. T. L. Magnanti & R. T. Wong, 1981. "Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria," Operations Research, INFORMS, vol. 29(3), pages 464-484, June.
    3. Lixin Tang & Wei Jiang & Georgios Saharidis, 2013. "An improved Benders decomposition algorithm for the logistics facility location problem with capacity expansions," Annals of Operations Research, Springer, vol. 210(1), pages 165-190, November.
    4. de Queiroz, Anderson Rodrigo & Marangon Lima, Luana M. & Marangon Lima, José W. & da Silva, Benedito C. & Scianni, Luciana A., 2016. "Climate change impacts in the energy supply of the Brazilian hydro-dominant power system," Renewable Energy, Elsevier, vol. 99(C), pages 379-389.
    5. Banez-Chicharro, Fernando & Olmos, Luis & Ramos, Andres & Latorre, Jesus M., 2017. "Beneficiaries of transmission expansion projects of an expansion plan: An Aumann-Shapley approach," Applied Energy, Elsevier, vol. 195(C), pages 382-401.
    6. Lu, Di & Wang, Bende & Wang, Yaodong & Zhou, Huicheng & Liang, Qiuhua & Peng, Yong & Roskilly, Tony, 2015. "Optimal operation of cascade hydropower stations using hydrogen as storage medium," Applied Energy, Elsevier, vol. 137(C), pages 56-63.
    7. Bhattacharya, Mita & Paramati, Sudharshan Reddy & Ozturk, Ilhan & Bhattacharya, Sankar, 2016. "The effect of renewable energy consumption on economic growth: Evidence from top 38 countries," Applied Energy, Elsevier, vol. 162(C), pages 733-741.
    8. Førsund, Finn R. & Singh, Balbir & Jensen, Trond & Larsen, Cato, 2008. "Phasing in wind-power in Norway: Network congestion and crowding-out of hydropower," Energy Policy, Elsevier, vol. 36(9), pages 3514-3520, September.
    9. Kristiansen, Martin & Korpås, Magnus & Svendsen, Harald G., 2018. "A generic framework for power system flexibility analysis using cooperative game theory," Applied Energy, Elsevier, vol. 212(C), pages 223-232.
    10. Flores, Robert J. & Shaffer, Brendan P. & Brouwer, Jacob, 2017. "Electricity costs for a Level 3 electric vehicle fueling station integrated with a building," Applied Energy, Elsevier, vol. 191(C), pages 367-384.
    11. A. M. Geoffrion & G. W. Graves, 1974. "Multicommodity Distribution System Design by Benders Decomposition," Management Science, INFORMS, vol. 20(5), pages 822-844, January.
    12. Du, Yan & Wang, Zhiwei & Liu, Guangyi & Chen, Xi & Yuan, Haoyu & Wei, Yanli & Li, Fangxing, 2018. "A cooperative game approach for coordinating multi-microgrid operation within distribution systems," Applied Energy, Elsevier, vol. 222(C), pages 383-395.
    13. Poojari, C.A. & Beasley, J.E., 2009. "Improving benders decomposition using a genetic algorithm," European Journal of Operational Research, Elsevier, vol. 199(1), pages 89-97, November.
    14. Dov Samet & Yair Tauman & Israel Zang, 1984. "An Application of the Aumann-Shapley Prices for Cost Allocation in Transportation Problems," Mathematics of Operations Research, INFORMS, vol. 9(1), pages 25-42, February.
    15. Drechsel, J. & Kimms, A., 2010. "Computing core allocations in cooperative games with an application to cooperative procurement," International Journal of Production Economics, Elsevier, vol. 128(1), pages 310-321, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alonso Pedrero, Raquel & Pisciella, Paolo & Crespo del Granado, Pedro, 2024. "Fair investment strategies in large energy communities: A scalable Shapley value approach," Energy, Elsevier, vol. 295(C).
    2. Liqin Zhang & Jun XIE & Xingying CHEN & Yongsheng Zhan & Lv Zhou, 2020. "Cooperative Game-Based Synergistic Gains Allocation Methods for Wind-Solar-Hydro Hybrid Generation System with Cascade Hydropower," Energies, MDPI, vol. 13(15), pages 1-14, July.
    3. Geng, Xinmin & Zhou, Ye & Zhao, Weiqiang & Shi, Li & Chen, Diyi & Bi, Xiaojian & Xu, Beibei, 2024. "Pricing ancillary service of a Francis hydroelectric generating system to promote renewable energy integration in a clean energy base: Tariff compensation of deep peak regulation," Renewable Energy, Elsevier, vol. 226(C).
    4. Mei, Jie & Chen, Chen & Wang, Jianhui & Kirtley, James L., 2019. "Coalitional game theory based local power exchange algorithm for networked microgrids," Applied Energy, Elsevier, vol. 239(C), pages 133-141.
    5. Ali Zarei & Sayed-Farhad Mousavi & Madjid Eshaghi Gordji & Hojat Karami, 2019. "Optimal Reservoir Operation Using Bat and Particle Swarm Algorithm and Game Theory Based on Optimal Water Allocation among Consumers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3071-3093, July.
    6. de Queiroz, Anderson Rodrigo & Faria, Victor A.D. & Lima, Luana M.M. & Lima, José W.M., 2019. "Hydropower revenues under the threat of climate change in Brazil," Renewable Energy, Elsevier, vol. 133(C), pages 873-882.
    7. Zhao, Leilei & Xue, Yixun & Sun, Hongbin & Du, Yuan & Chang, Xinyue & Su, Jia & Li, Zening, 2023. "Benefit allocation for combined heat and power dispatch considering mutual trust," Applied Energy, Elsevier, vol. 345(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    2. Brech, Claus-Henning & Ernst, Andreas & Kolisch, Rainer, 2019. "Scheduling medical residents’ training at university hospitals," European Journal of Operational Research, Elsevier, vol. 274(1), pages 253-266.
    3. Nader Ghaffarinasab & Bahar Y. Kara, 2019. "Benders Decomposition Algorithms for Two Variants of the Single Allocation Hub Location Problem," Networks and Spatial Economics, Springer, vol. 19(1), pages 83-108, March.
    4. M. Jenabi & S. Fatemi Ghomi & S. Torabi & S. Hosseinian, 2015. "Acceleration strategies of Benders decomposition for the security constraints power system expansion planning," Annals of Operations Research, Springer, vol. 235(1), pages 337-369, December.
    5. N. Beheshti Asl & S. A. MirHassani, 2019. "Accelerating benders decomposition: multiple cuts via multiple solutions," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 806-826, April.
    6. Pearce, Robin H. & Forbes, Michael, 2018. "Disaggregated Benders decomposition and branch-and-cut for solving the budget-constrained dynamic uncapacitated facility location and network design problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 78-88.
    7. Jalali, Sajjad & Seifbarghy, Mehdi & Niaki, Seyed Taghi Akhavan, 2018. "A risk-averse location-protection problem under intentional facility disruptions: A modified hybrid decomposition algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 196-219.
    8. de Sá, Elisangela Martins & de Camargo, Ricardo Saraiva & de Miranda, Gilberto, 2013. "An improved Benders decomposition algorithm for the tree of hubs location problem," European Journal of Operational Research, Elsevier, vol. 226(2), pages 185-202.
    9. Churkin, Andrey & Bialek, Janusz & Pozo, David & Sauma, Enzo & Korgin, Nikolay, 2021. "Review of Cooperative Game Theory applications in power system expansion planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Ragheb Rahmaniani & Shabbir Ahmed & Teodor Gabriel Crainic & Michel Gendreau & Walter Rei, 2020. "The Benders Dual Decomposition Method," Operations Research, INFORMS, vol. 68(3), pages 878-895, May.
    11. Lixin Tang & Wei Jiang & Georgios Saharidis, 2013. "An improved Benders decomposition algorithm for the logistics facility location problem with capacity expansions," Annals of Operations Research, Springer, vol. 210(1), pages 165-190, November.
    12. Teodor Gabriel Crainic & Mike Hewitt & Francesca Maggioni & Walter Rei, 2021. "Partial Benders Decomposition: General Methodology and Application to Stochastic Network Design," Transportation Science, INFORMS, vol. 55(2), pages 414-435, March.
    13. Kuthambalayan, Thyagaraj S. & Mehta, Peeyush & Shanker, Kripa, 2014. "Integrating operations and marketing decisions using delayed differentiation of products and guaranteed delivery time under stochastic demand," European Journal of Operational Research, Elsevier, vol. 237(2), pages 617-627.
    14. Vedat Bayram & Hande Yaman, 2018. "Shelter Location and Evacuation Route Assignment Under Uncertainty: A Benders Decomposition Approach," Transportation Science, INFORMS, vol. 52(2), pages 416-436, March.
    15. Elisangela Martins de Sá & Ivan Contreras & Jean-François Cordeau & Ricardo Saraiva de Camargo & Gilberto de Miranda, 2015. "The Hub Line Location Problem," Transportation Science, INFORMS, vol. 49(3), pages 500-518, August.
    16. Halit Üster & Panitan Kewcharoenwong, 2011. "Strategic Design and Analysis of a Relay Network in Truckload Transportation," Transportation Science, INFORMS, vol. 45(4), pages 505-523, November.
    17. Maher, Stephen J., 2021. "Implementing the branch-and-cut approach for a general purpose Benders’ decomposition framework," European Journal of Operational Research, Elsevier, vol. 290(2), pages 479-498.
    18. Altay, Nezih & Robinson Jr., Powell E. & Bretthauer, Kurt M., 2008. "Exact and heuristic solution approaches for the mixed integer setup knapsack problem," European Journal of Operational Research, Elsevier, vol. 190(3), pages 598-609, November.
    19. Camilo Ortiz-Astorquiza & Ivan Contreras & Gilbert Laporte, 2019. "An Exact Algorithm for Multilevel Uncapacitated Facility Location," Transportation Science, INFORMS, vol. 53(4), pages 1085-1106, July.
    20. Vatsa, Amit Kumar & Jayaswal, Sachin, 2015. "A New Formulation and Benders' Decomposition for Multi-period facility Location Problem with Server Uncertainty," IIMA Working Papers WP2015-02-07, Indian Institute of Management Ahmedabad, Research and Publication Department.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:226:y:2018:i:c:p:905-915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.