IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v188y2019ics0360544219317748.html
   My bibliography  Save this article

Opportunity cost including short-term energy storage in hydrothermal dispatch models using a linked representative periods approach

Author

Listed:
  • Tejada-Arango, Diego A.
  • Wogrin, Sonja
  • Siddiqui, Afzal S.
  • Centeno, Efraim

Abstract

Short-term energy storage systems, e.g., batteries, are becoming one promising option to deal with flexibility requirements in power systems due to the accommodation of renewable energy sources. Previous works using medium- and long-term planning tools have modeled the interaction between short-term energy storage systems and seasonal storage (e.g., hydro reservoirs) but despite these developments, opportunity costs considering the impact of short-term energy storage systems in stochastic hydrothermal dispatch models have not been analyzed. This paper proposes a novel formulation to include short-term energy storage systems operational decisions in a stochastic hydrothermal dispatch model, which is based on a Linked Representative Periods approach. The Linked Representative Periods approach disposes of both intra- and inter-period storage constraints, which in turn allow to adequately represent both short- and long-term storage at the same time. Apart from the novelty of the model formulation itself, one of the main contributions of this research stems from the underlying economic information that can be extracted from the dual variables of the intra- and inter-period constraints, which allows to derive an hourly opportunity cost of storage. Such a detailed hourly economic value of storage has not been proposed before in the literature and is not possible in a classic Load Duration Curve model that does not adequately capture short-term operation. This advantage is reflected in the case study results. For instance, the model proposed in this paper and based on Linked Representative Periods obtains operating decisions of short-term energy storage systems with errors between 5% and 10%, while the classic Load Duration Curve approach fails by an error greater than 100%. Moreover, the Load Duration Curve model cannot determine opportunity costs on an hourly basis and underestimates these opportunity costs of hydro (also known as water value) by 6%–24% for seasonal hydro reservoirs. The proposed Linked Representative Periods model produces an error on the opportunity cost of hydro units lower than 3%. Hourly opportunity costs for short-term battery energy storage systems using dual variables from both intra- and inter-period storage balance equations in the proposed model are also presented and analyzed. The case study shows that the proposed approach successfully internalizes both short- and long-term opportunity costs of energy storage systems. These results are useful for planning and policy analysis, as well as for bidding strategies of ESS owners in day-ahead markets and not taking them into account may lead to infeasible operation or to suboptimal planning.

Suggested Citation

  • Tejada-Arango, Diego A. & Wogrin, Sonja & Siddiqui, Afzal S. & Centeno, Efraim, 2019. "Opportunity cost including short-term energy storage in hydrothermal dispatch models using a linked representative periods approach," Energy, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:energy:v:188:y:2019:i:c:s0360544219317748
    DOI: 10.1016/j.energy.2019.116079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219317748
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nahmmacher, Paul & Schmid, Eva & Hirth, Lion & Knopf, Brigitte, 2016. "Carpe diem: A novel approach to select representative days for long-term power system modeling," Energy, Elsevier, vol. 112(C), pages 430-442.
    2. Kotzur, Leander & Markewitz, Peter & Robinius, Martin & Stolten, Detlef, 2018. "Time series aggregation for energy system design: Modeling seasonal storage," Applied Energy, Elsevier, vol. 213(C), pages 123-135.
    3. Latorre, Jesus M & Cerisola, Santiago & Ramos, Andres, 2007. "Clustering algorithms for scenario tree generation: Application to natural hydro inflows," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1339-1353, September.
    4. Shapiro, Alexander, 2011. "Analysis of stochastic dual dynamic programming method," European Journal of Operational Research, Elsevier, vol. 209(1), pages 63-72, February.
    5. de Queiroz, Anderson Rodrigo, 2016. "Stochastic hydro-thermal scheduling optimization: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 382-395.
    6. Zhang, Huifeng & Zhou, Jianzhong & Fang, Na & Zhang, Rui & Zhang, Yongchuan, 2013. "Daily hydrothermal scheduling with economic emission using simulated annealing technique based multi-objective cultural differential evolution approach," Energy, Elsevier, vol. 50(C), pages 24-37.
    7. Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
    8. Reichenberg, Lina & Siddiqui, Afzal S. & Wogrin, Sonja, 2018. "Policy implications of downscaling the time dimension in power system planning models to represent variability in renewable output," Energy, Elsevier, vol. 159(C), pages 870-877.
    9. Cerisola, Santiago & Latorre, Jesus M. & Ramos, Andres, 2012. "Stochastic dual dynamic programming applied to nonconvex hydrothermal models," European Journal of Operational Research, Elsevier, vol. 218(3), pages 687-697.
    10. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    11. Razavi, Seyed-Ehsan & Esmaeel Nezhad, Ali & Mavalizadeh, Hani & Raeisi, Fatima & Ahmadi, Abdollah, 2018. "Robust hydrothermal unit commitment: A mixed-integer linear framework," Energy, Elsevier, vol. 165(PB), pages 593-602.
    12. Zheng, J.H. & Chen, J.J. & Wu, Q.H. & Jing, Z.X., 2015. "Reliability constrained unit commitment with combined hydro and thermal generation embedded using self-learning group search optimizer," Energy, Elsevier, vol. 81(C), pages 245-254.
    13. Koltsaklis, Nikolaos E. & Georgiadis, Michael C., 2015. "A multi-period, multi-regional generation expansion planning model incorporating unit commitment constraints," Applied Energy, Elsevier, vol. 158(C), pages 310-331.
    14. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farzad Hassanzadeh Moghimi & Yihsu Chen & Afzal S. Siddiqui, 2023. "Flexible supply meets flexible demand: prosumer impact on strategic hydro operations," Computational Management Science, Springer, vol. 20(1), pages 1-35, December.
    2. Hassanzadeh Moghimi, Farzad & Boomsma, Trine K. & Siddiqui, Afzal S., 2024. "Transmission planning in an imperfectly competitive power sector with environmental externalities," Energy Economics, Elsevier, vol. 134(C).
    3. Teichgraeber, Holger & Brandt, Adam R., 2022. "Time-series aggregation for the optimization of energy systems: Goals, challenges, approaches, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Hoffmann, Maximilian & Priesmann, Jan & Nolting, Lars & Praktiknjo, Aaron & Kotzur, Leander & Stolten, Detlef, 2021. "Typical periods or typical time steps? A multi-model analysis to determine the optimal temporal aggregation for energy system models," Applied Energy, Elsevier, vol. 304(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Staffell, Iain & Pfenninger, Stefan, 2018. "The increasing impact of weather on electricity supply and demand," Energy, Elsevier, vol. 145(C), pages 65-78.
    2. Rasku, Topi & Miettinen, Jari & Rinne, Erkka & Kiviluoma, Juha, 2020. "Impact of 15-day energy forecasts on the hydro-thermal scheduling of a future Nordic power system," Energy, Elsevier, vol. 192(C).
    3. de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Energy, Elsevier, vol. 213(C).
    4. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Héctor Marañón-Ledesma & Asgeir Tomasgard, 2019. "Analyzing Demand Response in a Dynamic Capacity Expansion Model for the European Power Market," Energies, MDPI, vol. 12(15), pages 1-24, August.
    6. Hoffmann, Maximilian & Priesmann, Jan & Nolting, Lars & Praktiknjo, Aaron & Kotzur, Leander & Stolten, Detlef, 2021. "Typical periods or typical time steps? A multi-model analysis to determine the optimal temporal aggregation for energy system models," Applied Energy, Elsevier, vol. 304(C).
    7. Wang, Jing & Kang, Lixia & Liu, Yongzhong, 2022. "A multi-objective approach to determine time series aggregation strategies for optimal design of multi-energy systems," Energy, Elsevier, vol. 258(C).
    8. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Seljom, Pernille & Lind, Arne & Wagner, Fabian & Mesfun, Sennai, 2020. "Short-term solar and wind variability in long-term energy system models - A European case study," Energy, Elsevier, vol. 209(C).
    9. Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2024. "Assessing the relative impacts of maximum investment rate and temporal detail in capacity expansion models applied to power systems," Energy, Elsevier, vol. 290(C).
    10. Mads Raunbak & Timo Zeyer & Kun Zhu & Martin Greiner, 2017. "Principal Mismatch Patterns Across a Simplified Highly Renewable European Electricity Network," Energies, MDPI, vol. 10(12), pages 1-13, November.
    11. Thomas Heggarty & Jean-Yves Bourmaud & Robin Girard & Georges Kariniotakis, 2024. "Assessing the relative impacts of maximum investment rate and temporal detail in capacity expansion models applied to power systems," Post-Print hal-04383397, HAL.
    12. Alexis Tantet & Marc Stéfanon & Philippe Drobinski & Jordi Badosa & Silvia Concettini & Anna Cretì & Claudia D’Ambrosio & Dimitri Thomopulos & Peter Tankov, 2019. "e 4 clim 1.0: The Energy for a Climate Integrated Model: Description and Application to Italy," Energies, MDPI, vol. 12(22), pages 1-37, November.
    13. Backe, Stian & Zwickl-Bernhard, Sebastian & Schwabeneder, Daniel & Auer, Hans & Korpås, Magnus & Tomasgard, Asgeir, 2022. "Impact of energy communities on the European electricity and heating system decarbonization pathway: Comparing local and global flexibility responses," Applied Energy, Elsevier, vol. 323(C).
    14. Chen, Siyuan & Liu, Pei & Li, Zheng, 2020. "Low carbon transition pathway of power sector with high penetration of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    15. Wogrin, S. & Tejada-Arango, D. & Delikaraoglou, S. & Botterud, A., 2020. "Assessing the impact of inertia and reactive power constraints in generation expansion planning," Applied Energy, Elsevier, vol. 280(C).
    16. Gruber, Katharina & Regner, Peter & Wehrle, Sebastian & Zeyringer, Marianne & Schmidt, Johannes, 2022. "Towards global validation of wind power simulations: A multi-country assessment of wind power simulation from MERRA-2 and ERA-5 reanalyses bias-corrected with the global wind atlas," Energy, Elsevier, vol. 238(PA).
    17. Gómez-Pérez, Jesús D. & Latorre-Canteli, Jesus M. & Ramos, Andres & Perea, Alejandro & Sanz, Pablo & Hernández, Francisco, 2024. "Improving operating policies in stochastic optimization: An application to the medium-term hydrothermal scheduling problem," Applied Energy, Elsevier, vol. 359(C).
    18. Hoffmann, Maximilian & Kotzur, Leander & Stolten, Detlef, 2022. "The Pareto-optimal temporal aggregation of energy system models," Applied Energy, Elsevier, vol. 315(C).
    19. Duenas, Pablo & Ramos, Andres & Tapia-Ahumada, Karen & Olmos, Luis & Rivier, Michel & Pérez-Arriaga, Jose-Ignacio, 2018. "Security of supply in a carbon-free electric power system: The case of Iceland," Applied Energy, Elsevier, vol. 212(C), pages 443-454.
    20. Zhang, Hengxu & Cao, Yongji & Zhang, Yi & Terzija, Vladimir, 2018. "Quantitative synergy assessment of regional wind-solar energy resources based on MERRA reanalysis data," Applied Energy, Elsevier, vol. 216(C), pages 172-182.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:188:y:2019:i:c:s0360544219317748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.