IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i20p15046-d1262971.html
   My bibliography  Save this article

Optimizing Energy Usage and Smoothing Load Profile via a Home Energy Management Strategy with Vehicle-to-Home and Energy Storage System

Author

Listed:
  • Modawy Adam Ali Abdalla

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China)

  • Wang Min

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China)

  • Gehad Abdullah Amran

    (Department of Management Science and Engineering, Dalian University of Technology, Dalian 116024, China)

  • Amerah Alabrah

    (Department of Information Systems, College of Computer and Information Science, King Saud University, Riyadh 11543, Saudi Arabia)

  • Omer Abbaker Ahmed Mohammed

    (School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China)

  • Hussain AlSalman

    (Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia)

  • Bassiouny Saleh

    (College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    Production Engineering Department, Alexandria University, Alexandria 21544, Egypt)

Abstract

This study investigates an energy utilization optimization strategy in a smart home for charging electric vehicles (EVs) with/without a vehicle-to-home (V2H) and/or household energy storage system (HESS) to improve household energy utilization, smooth the load profile, and reduce electricity bills. The proposed strategy detects EV arrival and departure time, establishes the priority order between EV and HESS during charge and discharge, and ensures that the EV battery state of energy at the departure time is sufficient for its travel distance. It also ensures that the EV and HESS are charged when electricity prices are low and discharged in peak hours to reduce net electricity expenditure. The proposed strategy operates in different modes to control the energy amount flowing from the grid to EV and/or HESS and the energy amount drawn from the HESS and/or EV to feed the demand to maintain the load curve level within the average limits of the daily load curve. Four different scenarios are presented to investigate the role of HESS and EV technology in reducing electricity bills and smoothing the load curve in the smart house. The results demonstrate that the proposed strategy effectively reduces electricity costs by 12%, 15%, 14%, and 17% in scenarios A, B, C, and D, respectively, and smooths the load profile. Transferring valley electricity by V2H can reduce the electricity costs better than HESS, whereas HESS is better than EV at flattening the load curve. Transferring valley electricity through both V2H and HESS gives better results in reducing electricity costs and smoothing the load curve than transferring valley electricity by HESS or V2H alone.

Suggested Citation

  • Modawy Adam Ali Abdalla & Wang Min & Gehad Abdullah Amran & Amerah Alabrah & Omer Abbaker Ahmed Mohammed & Hussain AlSalman & Bassiouny Saleh, 2023. "Optimizing Energy Usage and Smoothing Load Profile via a Home Energy Management Strategy with Vehicle-to-Home and Energy Storage System," Sustainability, MDPI, vol. 15(20), pages 1-28, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:15046-:d:1262971
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/20/15046/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/20/15046/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martinopoulos, Georgios, 2020. "Are rooftop photovoltaic systems a sustainable solution for Europe? A life cycle impact assessment and cost analysis," Applied Energy, Elsevier, vol. 257(C).
    2. Wu, Wei & Lin, Boqiang, 2018. "Application value of energy storage in power grid: A special case of China electricity market," Energy, Elsevier, vol. 165(PB), pages 1191-1199.
    3. Zhou, Bin & Li, Wentao & Chan, Ka Wing & Cao, Yijia & Kuang, Yonghong & Liu, Xi & Wang, Xiong, 2016. "Smart home energy management systems: Concept, configurations, and scheduling strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 30-40.
    4. SoltaniNejad Farsangi, Alireza & Hadayeghparast, Shahrzad & Mehdinejad, Mehdi & Shayanfar, Heidarali, 2018. "A novel stochastic energy management of a microgrid with various types of distributed energy resources in presence of demand response programs," Energy, Elsevier, vol. 160(C), pages 257-274.
    5. Modawy Adam Ali Abdalla & Wang Min & Omer Abbaker Ahmed Mohammed, 2020. "Two-Stage Energy Management Strategy of EV and PV Integrated Smart Home to Minimize Electricity Cost and Flatten Power Load Profile," Energies, MDPI, vol. 13(23), pages 1-18, December.
    6. Nejat, Payam & Jomehzadeh, Fatemeh & Taheri, Mohammad Mahdi & Gohari, Mohammad & Abd. Majid, Muhd Zaimi, 2015. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 843-862.
    7. Zhao, G.Y. & Liu, Z.Y. & He, Y. & Cao, H.J. & Guo, Y.B., 2017. "Energy consumption in machining: Classification, prediction, and reduction strategy," Energy, Elsevier, vol. 133(C), pages 142-157.
    8. Huang, Pei & Lovati, Marco & Zhang, Xingxing & Bales, Chris, 2020. "A coordinated control to improve performance for a building cluster with energy storage, electric vehicles, and energy sharing considered," Applied Energy, Elsevier, vol. 268(C).
    9. Khemakhem, Siwar & Rekik, Mouna & Krichen, Lotfi, 2017. "A flexible control strategy of plug-in electric vehicles operating in seven modes for smoothing load power curves in smart grid," Energy, Elsevier, vol. 118(C), pages 197-208.
    10. Weige Zhang & Di Zhang & Biqiang Mu & Le Yi Wang & Yan Bao & Jiuchun Jiang & Hugo Morais, 2017. "Decentralized Electric Vehicle Charging Strategies for Reduced Load Variation and Guaranteed Charge Completion in Regional Distribution Grids," Energies, MDPI, vol. 10(2), pages 1-19, January.
    11. Khemakhem, Siwar & Rekik, Mouna & Krichen, Lotfi, 2019. "Double layer home energy supervision strategies based on demand response and plug-in electric vehicle control for flattening power load curves in a smart grid," Energy, Elsevier, vol. 167(C), pages 312-324.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agga, Ali & Abbou, Ahmed & Labbadi, Moussa & El Houm, Yassine, 2021. "Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models," Renewable Energy, Elsevier, vol. 177(C), pages 101-112.
    2. Yu, Hang & Shang, Yitong & Niu, Songyan & Cheng, Chong & Shao, Ziyun & Jian, Linni, 2022. "Towards energy-efficient and cost-effective DC nanaogrid: A novel pseudo hierarchical architecture incorporating V2G technology for both autonomous coordination and regulated power dispatching," Applied Energy, Elsevier, vol. 313(C).
    3. Zhou, Yuekuan, 2022. "Energy sharing and trading on a novel spatiotemporal energy network in Guangdong-Hong Kong-Macao Greater Bay Area," Applied Energy, Elsevier, vol. 318(C).
    4. Seok-Jun Bu & Sung-Bae Cho, 2020. "Time Series Forecasting with Multi-Headed Attention-Based Deep Learning for Residential Energy Consumption," Energies, MDPI, vol. 13(18), pages 1-16, September.
    5. Wu, Wei & Lin, Boqiang, 2021. "Benefits of electric vehicles integrating into power grid," Energy, Elsevier, vol. 224(C).
    6. Victor J. Gutierrez-Martinez & Carlos A. Moreno-Bautista & Jose M. Lozano-Garcia & Alejandro Pizano-Martinez & Enrique A. Zamora-Cardenas & Miguel A. Gomez-Martinez, 2019. "A Heuristic Home Electric Energy Management System Considering Renewable Energy Availability," Energies, MDPI, vol. 12(4), pages 1-20, February.
    7. Uddin, Moslem & Romlie, M.F. & Abdullah, M.F. & Tan, ChiaKwang & Shafiullah, GM & Bakar, A.H.A., 2020. "A novel peak shaving algorithm for islanded microgrid using battery energy storage system," Energy, Elsevier, vol. 196(C).
    8. Modawy Adam Ali Abdalla & Wang Min & Omer Abbaker Ahmed Mohammed, 2020. "Two-Stage Energy Management Strategy of EV and PV Integrated Smart Home to Minimize Electricity Cost and Flatten Power Load Profile," Energies, MDPI, vol. 13(23), pages 1-18, December.
    9. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    10. Andrew Chapman & Timothy Fraser & Melanie Dennis, 2019. "Investigating Ties between Energy Policy and Social Equity Research: A Citation Network Analysis," Social Sciences, MDPI, vol. 8(5), pages 1-18, April.
    11. Rittichai Liemthong & Chitchai Srithapon & Prasanta K. Ghosh & Rongrit Chatthaworn, 2022. "Home Energy Management Strategy-Based Meta-Heuristic Optimization for Electrical Energy Cost Minimization Considering TOU Tariffs," Energies, MDPI, vol. 15(2), pages 1-22, January.
    12. Krzysztof Wiśniewski & Gabriela Rutkowska & Katarzyna Jeleniewicz & Norbert Dąbkowski & Jarosław Wójt & Marek Chalecki & Tomasz Wierzbicki, 2024. "Ecologically Friendly Building Materials: A Case Study of Clay–Ash Composites for the Efficient Management of Fly Ash from the Thermal Conversion of Sewage Sludge," Sustainability, MDPI, vol. 16(9), pages 1-18, April.
    13. Anass Berouine & Radouane Ouladsine & Mohamed Bakhouya & Mohamed Essaaidi, 2020. "Towards a Real-Time Predictive Management Approach of Indoor Air Quality in Energy-Efficient Buildings," Energies, MDPI, vol. 13(12), pages 1-16, June.
    14. Taghizadeh-Hesary, Farhad & Rasoulinezhad, Ehsan & Shahbaz, Muhammad & Vinh Vo, Xuan, 2021. "How energy transition and power consumption are related in Asian economies with different income levels?," Energy, Elsevier, vol. 237(C).
    15. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    16. Roula Inglesi-Lotz & Luis Diez del Corral Morales, 2017. "The Effect of Education on a Country’s Energy Consumption: Evidence from Developed and Developing Countries," Working Papers 201733, University of Pretoria, Department of Economics.
    17. Li, Shuangqi & Zhao, Pengfei & Gu, Chenghong & Huo, Da & Zeng, Xianwu & Pei, Xiaoze & Cheng, Shuang & Li, Jianwei, 2022. "Online battery-protective vehicle to grid behavior management," Energy, Elsevier, vol. 243(C).
    18. Galatioto, A. & Ricciu, R. & Salem, T. & Kinab, E., 2019. "Energy and economic analysis on retrofit actions for Italian public historic buildings," Energy, Elsevier, vol. 176(C), pages 58-66.
    19. Milad Zeraatpisheh & Reza Arababadi & Mohsen Saffari Pour, 2018. "Economic Analysis for Residential Solar PV Systems Based on Different Demand Charge Tariffs," Energies, MDPI, vol. 11(12), pages 1-19, November.
    20. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:15046-:d:1262971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.