IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9608-d1007116.html
   My bibliography  Save this article

A Novel Six-Phase V-Shaped Flux-Switching Permanent Magnet Generator for Wind Power Generation

Author

Listed:
  • Pattasad Seangwong

    (Department of Electrical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand)

  • Supanat Chamchuen

    (Department of Electrical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand)

  • Nuwantha Fernando

    (School of Engineering, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC 3000, Australia)

  • Apirat Siritaratiwat

    (Department of Electrical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand)

  • Pirat Khunkitti

    (Department of Electrical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand)

Abstract

Flux-switching permanent magnet (FSPM) machines have attracted wide attention in many rotating applications that require high-power density. In this research, we propose for the first time a novel six-phase FSPM generator with a stator featuring a V-shaped flux-focusing magnet arrangement. The design is targeted for low-speed wind power generation. To achieve the design objectives as a wind generator, the highly comprehensive structural parameters, including the number of rotor poles, split ratio, and rotor pole width, are designed and optimized using 2D finite-element analysis. From findings, the optimal stator/rotor pole combination is discovered to be 12/19 for the considered power and speed requirements. When compared to the initial structure, the optimized structure of the V-shaped FSPM generator is found to produce a significant improvement in EMF, cogging torque, electromagnetic torque, power, and efficiency. The power-generating performance of the proposed FSPM generator is found to be outstanding when compared to the radial-flux PM generators described in the literature. Therefore, the proposed V-shaped FSPM generator is capable of being used for low-speed wind power generation. The machine configuration adjustment approach presented in this work can also be utilized for the design of permanent magnet wind generators.

Suggested Citation

  • Pattasad Seangwong & Supanat Chamchuen & Nuwantha Fernando & Apirat Siritaratiwat & Pirat Khunkitti, 2022. "A Novel Six-Phase V-Shaped Flux-Switching Permanent Magnet Generator for Wind Power Generation," Energies, MDPI, vol. 15(24), pages 1-11, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9608-:d:1007116
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9608/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9608/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Warat Sriwannarat & Pattasad Seangwong & Vannakone Lounthavong & Sirote Khunkitti & Apirat Siritaratiwat & Pirat Khunkitti, 2020. "An Improvement of Output Power in Doubly Salient Permanent Magnet Generator Using Pole Configuration Adjustment," Energies, MDPI, vol. 13(17), pages 1-14, September.
    2. Vannakone Lounthavong & Warat Sriwannarat & Apirat Siritaratiwat & Pirat Khunkitti, 2019. "Optimal Stator Design of Doubly Salient Permanent Magnet Generator for Enhancing the Electromagnetic Performance," Energies, MDPI, vol. 12(16), pages 1-12, August.
    3. Chitchai Srithapon & Prasanta Ghosh & Apirat Siritaratiwat & Rongrit Chatthaworn, 2020. "Optimization of Electric Vehicle Charging Scheduling in Urban Village Networks Considering Energy Arbitrage and Distribution Cost," Energies, MDPI, vol. 13(2), pages 1-20, January.
    4. Feng Li & Xiaoyong Zhu, 2021. "Comparative Study of Stepwise Optimization and Global Optimization on a Nine-Phase Flux-Switching PM Generator," Energies, MDPI, vol. 14(16), pages 1-13, August.
    5. Panyawoot Boonluk & Sirote Khunkitti & Pradit Fuangfoo & Apirat Siritaratiwat, 2021. "Optimal Siting and Sizing of Battery Energy Storage: Case Study Seventh Feeder at Nakhon Phanom Substation in Thailand," Energies, MDPI, vol. 14(5), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vanna Torn & Pattasad Seangwong & Nuwantha Fernando & Apirat Siritaratiwat & Pirat Khunkitti, 2023. "Performance Improvement of Flux Switching Permanent Magnet Wind Generator Using Magnetic Flux Barrier Design," Sustainability, MDPI, vol. 15(11), pages 1-14, May.
    2. Chainattapol Nissayan & Pattasad Seangwong & Supanat Chamchuen & Nuwantha Fernando & Apirat Siritaratiwat & Pirat Khunkitti, 2022. "Modeling and Optimal Configuration Design of Flux-Barrier for Torque Improvement of Rotor Flux Switching Permanent Magnet Machine," Energies, MDPI, vol. 15(22), pages 1-12, November.
    3. Rittichai Liemthong & Chitchai Srithapon & Prasanta K. Ghosh & Rongrit Chatthaworn, 2022. "Home Energy Management Strategy-Based Meta-Heuristic Optimization for Electrical Energy Cost Minimization Considering TOU Tariffs," Energies, MDPI, vol. 15(2), pages 1-22, January.
    4. Xiaohong Jiang & Xiucheng Guo, 2020. "Evaluation of Performance and Technological Characteristics of Battery Electric Logistics Vehicles: China as a Case Study," Energies, MDPI, vol. 13(10), pages 1-23, May.
    5. Adil Amin & Wajahat Ullah Khan Tareen & Muhammad Usman & Haider Ali & Inam Bari & Ben Horan & Saad Mekhilef & Muhammad Asif & Saeed Ahmed & Anzar Mahmood, 2020. "A Review of Optimal Charging Strategy for Electric Vehicles under Dynamic Pricing Schemes in the Distribution Charging Network," Sustainability, MDPI, vol. 12(23), pages 1-28, December.
    6. Cherif Guerroudj & Yannis L. Karnavas & Jean-Frederic Charpentier & Ioannis D. Chasiotis & Lemnouer Bekhouche & Rachid Saou & Mohammed El-Hadi Zaïm, 2021. "Design Optimization of Outer Rotor Toothed Doubly Salient Permanent Magnet Generator Using Symbiotic Organisms Search Algorithm," Energies, MDPI, vol. 14(8), pages 1-25, April.
    7. Sirote Khunkitti & Apirat Siritaratiwat & Suttichai Premrudeepreechacharn, 2021. "Multi-Objective Optimal Power Flow Problems Based on Slime Mould Algorithm," Sustainability, MDPI, vol. 13(13), pages 1-21, July.
    8. Ahmad Almaghrebi & Fares Aljuheshi & Mostafa Rafaie & Kevin James & Mahmoud Alahmad, 2020. "Data-Driven Charging Demand Prediction at Public Charging Stations Using Supervised Machine Learning Regression Methods," Energies, MDPI, vol. 13(16), pages 1-21, August.
    9. Muhammad Usman & Wajahat Ullah Khan Tareen & Adil Amin & Haider Ali & Inam Bari & Muhammad Sajid & Mehdi Seyedmahmoudian & Alex Stojcevski & Anzar Mahmood & Saad Mekhilef, 2021. "A Coordinated Charging Scheduling of Electric Vehicles Considering Optimal Charging Time for Network Power Loss Minimization," Energies, MDPI, vol. 14(17), pages 1-16, August.
    10. Abid, Md. Shadman & Apon, Hasan Jamil & Hossain, Salman & Ahmed, Ashik & Ahshan, Razzaqul & Lipu, M.S. Hossain, 2024. "A novel multi-objective optimization based multi-agent deep reinforcement learning approach for microgrid resources planning," Applied Energy, Elsevier, vol. 353(PA).
    11. Niphon Kaewdornhan & Chitchai Srithapon & Rittichai Liemthong & Rongrit Chatthaworn, 2023. "Real-Time Multi-Home Energy Management with EV Charging Scheduling Using Multi-Agent Deep Reinforcement Learning Optimization," Energies, MDPI, vol. 16(5), pages 1-25, March.
    12. Warat Sriwannarat & Pattasad Seangwong & Vannakone Lounthavong & Sirote Khunkitti & Apirat Siritaratiwat & Pirat Khunkitti, 2020. "An Improvement of Output Power in Doubly Salient Permanent Magnet Generator Using Pole Configuration Adjustment," Energies, MDPI, vol. 13(17), pages 1-14, September.
    13. Rahman, Md Mustafizur & Gemechu, Eskinder & Oni, Abayomi Olufemi & Kumar, Amit, 2023. "The development of a techno-economic model for assessment of cost of energy storage for vehicle-to-grid applications in a cold climate," Energy, Elsevier, vol. 262(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9608-:d:1007116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.