IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i2p529-d723100.html
   My bibliography  Save this article

Developing a Hydrogen Fuel Cell Vehicle (HFCV) Energy Consumption Model for Transportation Applications

Author

Listed:
  • Kyoungho Ahn

    (Virginia Tech Transportation Institute, Blacksburg, VA 24061, USA)

  • Hesham A. Rakha

    (Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA)

Abstract

This paper presents a simple hydrogen fuel cell vehicle (HFCV) energy consumption model. Simple fuel/energy consumption models have been developed and employed to estimate the energy and environmental impacts of various transportation projects for internal combustion engine vehicles (ICEVs), battery electric vehicles (BEVs), and hybrid electric vehicles (HEVs). However, there are few published results on HFCV energy models that can be simply implemented in transportation applications. The proposed HFCV energy model computes instantaneous energy consumption utilizing instantaneous vehicle speed, acceleration, and roadway grade as input variables. The mode accurately estimates energy consumption, generating errors of 0.86% and 2.17% relative to laboratory data for the fuel cell estimation and the total energy estimation, respectively. Furthermore, this work validated the proposed model against independent data and found that the new model accurately estimated the energy consumption, producing an error of 1.9% and 1.0% relative to empirical data for the fuel cell and the total energy estimation, respectively. The results demonstrate that transportation engineers, policy makers, automakers, and environmental engineers can use the proposed model to evaluate the energy consumption effects of transportation projects and connected and automated vehicle (CAV) transportation applications within microscopic traffic simulation models.

Suggested Citation

  • Kyoungho Ahn & Hesham A. Rakha, 2022. "Developing a Hydrogen Fuel Cell Vehicle (HFCV) Energy Consumption Model for Transportation Applications," Energies, MDPI, vol. 15(2), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:529-:d:723100
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/2/529/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/2/529/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fiori, Chiara & Ahn, Kyoungho & Rakha, Hesham A., 2016. "Power-based electric vehicle energy consumption model: Model development and validation," Applied Energy, Elsevier, vol. 168(C), pages 257-268.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    2. Yashraj Tripathy & Andrew McGordon & Anup Barai, 2020. "Improving Accessible Capacity Tracking at Low Ambient Temperatures for Range Estimation of Battery Electric Vehicles," Energies, MDPI, vol. 13(8), pages 1-18, April.
    3. K. S. Reddy & S. Aravindhan & Tapas K. Mallick, 2017. "Techno-Economic Investigation of Solar Powered Electric Auto-Rickshaw for a Sustainable Transport System," Energies, MDPI, vol. 10(6), pages 1-15, May.
    4. Stefano De Pinto & Pablo Camocardi & Christoforos Chatzikomis & Aldo Sorniotti & Francesco Bottiglione & Giacomo Mantriota & Pietro Perlo, 2020. "On the Comparison of 2- and 4-Wheel-Drive Electric Vehicle Layouts with Central Motors and Single- and 2-Speed Transmission Systems," Energies, MDPI, vol. 13(13), pages 1-24, June.
    5. Nan, Sirui & Tu, Ran & Li, Tiezhu & Sun, Jian & Chen, Haibo, 2022. "From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus," Energy, Elsevier, vol. 261(PA).
    6. Huang, Hai-chao & He, Hong-di & Peng, Zhong-ren, 2024. "Urban-scale estimation model of carbon emissions for ride-hailing electric vehicles during operational phase," Energy, Elsevier, vol. 293(C).
    7. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.
    8. Soulios, V. & Loonen, R.C.G.M. & Metavitsiadis, V. & Hensen, J.L.M., 2018. "Computational performance analysis of overheating mitigation measures in parked vehicles," Applied Energy, Elsevier, vol. 231(C), pages 635-644.
    9. Li, Hai & Zheng, Peng & Zhang, Tingsheng & Zou, Yingquan & Pan, Yajia & Zhang, Zutao & Azam, Ali, 2021. "A high-efficiency energy regenerative shock absorber for powering auxiliary devices of new energy driverless buses," Applied Energy, Elsevier, vol. 295(C).
    10. Kapetanović, Marko & Núñez, Alfredo & van Oort, Niels & Goverde, Rob M.P., 2021. "Reducing fuel consumption and related emissions through optimal sizing of energy storage systems for diesel-electric trains," Applied Energy, Elsevier, vol. 294(C).
    11. Wang, Hua & Zhao, De & Meng, Qiang & Ong, Ghim Ping & Lee, Der-Horng, 2020. "Network-level energy consumption estimation for electric vehicles considering vehicle and user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 30-46.
    12. Yuan, Xinmei & Zhang, Chuanpu & Hong, Guokai & Huang, Xueqi & Li, Lili, 2017. "Method for evaluating the real-world driving energy consumptions of electric vehicles," Energy, Elsevier, vol. 141(C), pages 1955-1968.
    13. Sun, Xilei & Fu, Jianqin, 2024. "Many-objective optimization of BEV design parameters based on gradient boosting decision tree models and the NSGA-III algorithm considering the ambient temperature," Energy, Elsevier, vol. 288(C).
    14. Guo, Qiangqiang & Ban, Xuegang (Jeff), 2023. "A multi-scale control framework for urban traffic control with connected and automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 175(C).
    15. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.
    16. Sun, Xilei & Zhou, Feng & Fu, Jianqin & Liu, Jingping, 2024. "Experiment and simulation study on energy flow characteristics of a battery electric vehicle throughout the entire driving range in low-temperature conditions," Energy, Elsevier, vol. 292(C).
    17. Muhammed Alhanouti & Frank Gauterin, 2024. "A Generic Model for Accurate Energy Estimation of Electric Vehicles," Energies, MDPI, vol. 17(2), pages 1-21, January.
    18. Huber, Julian & Dann, David & Weinhardt, Christof, 2020. "Probabilistic forecasts of time and energy flexibility in battery electric vehicle charging," Applied Energy, Elsevier, vol. 262(C).
    19. Liu, Kai & Wang, Jiangbo & Yamamoto, Toshiyuki & Morikawa, Takayuki, 2016. "Modelling the multilevel structure and mixed effects of the factors influencing the energy consumption of electric vehicles," Applied Energy, Elsevier, vol. 183(C), pages 1351-1360.
    20. Gao, Kangping & Xu, Xinxin & Jiao, Shengjie, 2022. "Prediction and visualization analysis of drilling energy consumption based on mechanism and data hybrid drive," Energy, Elsevier, vol. 261(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:529-:d:723100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.