IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i2p437-d720268.html
   My bibliography  Save this article

Current Harmonic Aggregation Cases for Contemporary Loads

Author

Listed:
  • Kamran Daniel

    (Department of Power Engineering and Mechatronics, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
    Department of Electrical, Electronics and Telecommunication Engineering, FSD Campus, University of Engineering and Technology, Lahore 54890, Pakistan)

  • Lauri Kütt

    (Department of Power Engineering and Mechatronics, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia)

  • Muhammad Naveed Iqbal

    (Department of Power Engineering and Mechatronics, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
    Department of Electrical Engineering, Government College University, Lahore 54000, Pakistan)

  • Noman Shabbir

    (Department of Power Engineering and Mechatronics, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia)

  • Ateeq Ur Rehman

    (Department of Electrical Engineering, Government College University, Lahore 54000, Pakistan)

  • Muhammad Shafiq

    (Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Korea)

  • Habib Hamam

    (Faculty of Engineering, Université de Moncton, Moncton, NB E1A3E9, Canada
    Spectrum of Knowledge Production & Skills Development, Sfax 3027, Tunisia
    Department of Electrical and Electronic Eng. Science, School of Electrical Engineering, University of Johannesburg, Johannesburg 2006, South Africa)

Abstract

Power electronic circuits in modern power supplies have improved the conversion efficiency on the one hand but have also increased harmonic emissions. Harmonic currents from the operation of these units affect the voltage waveforms of the network and could compromise the reliability of the network. Load and source non-linearity can, therefore, limit the renewable source’s hosting capacity in the grid, as a large number of inverter units may increase the harmonic distortions. As a result, voltage and current distortions could reach unbearable levels in devices connected to the network. Harmonic estimation modelling often relies on measurement data, and differences may appear in mathematical simulations as the harmonic aggregation or cancellation may generate different results due to the inaccuracies and limitations of the measurement device. In this paper, the effect of harmonic currents cancellation on the aggregation of different load currents is evaluated to show its impact in the network by presenting a comparison between the measurement and mathematical aggregation of harmonics. Furthermore, the harmonic cancellation phenomenon is also qualified for multiple loads connected to the power supply.

Suggested Citation

  • Kamran Daniel & Lauri Kütt & Muhammad Naveed Iqbal & Noman Shabbir & Ateeq Ur Rehman & Muhammad Shafiq & Habib Hamam, 2022. "Current Harmonic Aggregation Cases for Contemporary Loads," Energies, MDPI, vol. 15(2), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:437-:d:720268
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/2/437/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/2/437/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tiago E. C. de Oliveira & Pedro M. S. Carvalho & Paulo F. Ribeiro & Benedito D. Bonatto, 2018. "PV Hosting Capacity Dependence on Harmonic Voltage Distortion in Low-Voltage Grids: Model Validation with Experimental Data," Energies, MDPI, vol. 11(2), pages 1-13, February.
    2. Dichen Liu & Chenxu Wang & Fei Tang & Yixi Zhou, 2020. "Probabilistic Assessment of Hybrid Wind-PV Hosting Capacity in Distribution Systems," Sustainability, MDPI, vol. 12(6), pages 1-19, March.
    3. Muhammad Naveed Iqbal & Lauri Kütt & Matti Lehtonen & Robert John Millar & Verner Püvi & Anton Rassõlkin & Galina L. Demidova, 2021. "Travel Activity Based Stochastic Modelling of Load and Charging State of Electric Vehicles," Sustainability, MDPI, vol. 13(3), pages 1-14, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcio L. M. Amorim & Gabriel Augusto Ginja & João Paulo Carmo & Melkzedekue Moraes Alcântara Moreira & Adriano Almeida Goncalves Siqueira & Jose A. Afonso, 2022. "Low-Cost/High-Precision Smart Power Supply for Data Loggers," Energies, MDPI, vol. 16(1), pages 1-27, December.
    2. Adrian Eisenmann & Tim Streubel & Krzysztof Rudion, 2022. "Power Quality Mitigation via Smart Demand-Side Management Based on a Genetic Algorithm," Energies, MDPI, vol. 15(4), pages 1-24, February.
    3. Muhammad Shahid Mastoi & Hafiz Mudassir Munir & Shenxian Zhuang & Mannan Hassan & Muhammad Usman & Ahmad Alahmadi & Basem Alamri, 2022. "A Critical Analysis of the Impact of Pandemic on China’s Electricity Usage Patterns and the Global Development of Renewable Energy," IJERPH, MDPI, vol. 19(8), pages 1-30, April.
    4. Bilal Masood & Song Guobing & Jamel Nebhen & Ateeq Ur Rehman & Muhammad Naveed Iqbal & Iftikhar Rasheed & Mohit Bajaj & Muhammad Shafiq & Habib Hamam, 2022. "Investigation and Field Measurements for Demand Side Management Control Technique of Smart Air Conditioners located at Residential, Commercial, and Industrial Sites," Energies, MDPI, vol. 15(7), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md Tariqul Islam & M. J. Hossain, 2023. "Artificial Intelligence for Hosting Capacity Analysis: A Systematic Literature Review," Energies, MDPI, vol. 16(4), pages 1-33, February.
    2. Yao, Hongmin & Qin, Wenping & Jing, Xiang & Zhu, Zhilong & Wang, Ke & Han, Xiaoqing & Wang, Peng, 2022. "Possibilistic evaluation of photovoltaic hosting capacity on distribution networks under uncertain environment," Applied Energy, Elsevier, vol. 324(C).
    3. Muhammad Ali & Krishneel Prakash & Carlos Macana & Ali Kashif Bashir & Alireza Jolfaei & Awais Bokhari & Jiří Jaromír Klemeš & Hemanshu Pota, 2022. "Modeling Residential Electricity Consumption from Public Demographic Data for Sustainable Cities," Energies, MDPI, vol. 15(6), pages 1-16, March.
    4. Muhammad Naveed Iqbal & Lauri Kütt & Kamran Daniel & Bilal Asad & Payam Shams Ghahfarokhi, 2021. "Estimation of Harmonic Emission of Electric Vehicles and Their Impact on Low Voltage Residential Network," Sustainability, MDPI, vol. 13(15), pages 1-17, July.
    5. Krystyna Kurowska & Hubert Kryszk & Stanisław Bielski, 2022. "Location and Technical Requirements for Photovoltaic Power Stations in Poland," Energies, MDPI, vol. 15(7), pages 1-16, April.
    6. Tiago Elias Castelo de Oliveira & Math Bollen & Paulo Fernando Ribeiro & Pedro M. S. de Carvalho & Antônio C. Zambroni & Benedito D. Bonatto, 2019. "The Concept of Dynamic Hosting Capacity for Distributed Energy Resources: Analytics and Practical Considerations," Energies, MDPI, vol. 12(13), pages 1-18, July.
    7. Luis Hernández-Callejo, 2019. "A Comprehensive Review of Operation and Control, Maintenance and Lifespan Management, Grid Planning and Design, and Metering in Smart Grids," Energies, MDPI, vol. 12(9), pages 1-50, April.
    8. Vincent Umoh & Innocent Davidson & Abayomi Adebiyi & Unwana Ekpe, 2023. "Methods and Tools for PV and EV Hosting Capacity Determination in Low Voltage Distribution Networks—A Review," Energies, MDPI, vol. 16(8), pages 1-25, April.
    9. Shubham Mishra & Shrey Verma & Subhankar Chowdhury & Ambar Gaur & Subhashree Mohapatra & Gaurav Dwivedi & Puneet Verma, 2021. "A Comprehensive Review on Developments in Electric Vehicle Charging Station Infrastructure and Present Scenario of India," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    10. Piotr Rosik & Sławomir Goliszek & Tomasz Komornicki & Patryk Duma, 2021. "Forecast of the Impact of Electric Car Battery Performance and Infrastructural and Demographic Changes on Cumulative Accessibility for the Five Most Populous Cities in Poland," Energies, MDPI, vol. 14(24), pages 1-12, December.
    11. Musharraf Wajahat & Hassan Abdullah Khalid & Ghullam Mustafa Bhutto & Claus Leth Bak, 2019. "A Comparative Study into Enhancing the PV Penetration Limit of a LV CIGRE Residential Network with Distributed Grid-Tied Single-Phase PV Systems," Energies, MDPI, vol. 12(15), pages 1-17, August.
    12. Ismael, Sherif M. & Abdel Aleem, Shady H.E. & Abdelaziz, Almoataz Y. & Zobaa, Ahmed F., 2019. "State-of-the-art of hosting capacity in modern power systems with distributed generation," Renewable Energy, Elsevier, vol. 130(C), pages 1002-1020.
    13. Kharrazi, A. & Sreeram, V. & Mishra, Y., 2020. "Assessment techniques of the impact of grid-tied rooftop photovoltaic generation on the power quality of low voltage distribution network - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    14. Saheed Lekan Gbadamosi & Nnamdi I. Nwulu & Pierluigi Siano, 2022. "Harmonics Constrained Approach to Composite Power System Expansion Planning with Large-Scale Renewable Energy Sources," Energies, MDPI, vol. 15(11), pages 1-15, June.
    15. Seppo Borenius & Petri Tuomainen & Jyri Tompuri & Jesse Mansikkamäki & Matti Lehtonen & Heikki Hämmäinen & Raimo Kantola, 2022. "Scenarios on the Impact of Electric Vehicles on Distribution Grids," Energies, MDPI, vol. 15(13), pages 1-30, June.
    16. Shaila Arif & Ata E Rabbi & Shams Uddin Ahmed & Molla Shahadat Hossain Lipu & Taskin Jamal & Tareq Aziz & Mahidur R. Sarker & Amna Riaz & Talal Alharbi & Muhammad Majid Hussain, 2022. "Enhancement of Solar PV Hosting Capacity in a Remote Industrial Microgrid: A Methodical Techno-Economic Approach," Sustainability, MDPI, vol. 14(14), pages 1-23, July.
    17. Samar Fatima & Verner Püvi & Matti Lehtonen, 2020. "Review on the PV Hosting Capacity in Distribution Networks," Energies, MDPI, vol. 13(18), pages 1-34, September.
    18. Miha Grabner & Andrej Souvent & Nermin Suljanović & Andrej Košir & Boštjan Blažič, 2019. "Probabilistic Methodology for Calculating PV Hosting Capacity in LV Networks Using Actual Building Roof Data," Energies, MDPI, vol. 12(21), pages 1-15, October.
    19. Mohammad Seydali Seyf Abad & Jennifer A. Hayward & Saad Sayeef & Peter Osman & Jin Ma, 2021. "Tidal Energy Hosting Capacity in Australia’s Future Energy Mix," Energies, MDPI, vol. 14(5), pages 1-20, March.
    20. Anton Rassõlkin & Kari Tammi & Galina Demidova & Hassan HosseinNia, 2022. "Mechatronics Technology and Transportation Sustainability," Sustainability, MDPI, vol. 14(3), pages 1-3, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:437-:d:720268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.