IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i15p2964-d253674.html
   My bibliography  Save this article

A Comparative Study into Enhancing the PV Penetration Limit of a LV CIGRE Residential Network with Distributed Grid-Tied Single-Phase PV Systems

Author

Listed:
  • Musharraf Wajahat

    (Department of Electrical Power Engineering, National University of Sciences and Technology, H-12, Islamabad 44000, Pakistan)

  • Hassan Abdullah Khalid

    (Department of Electrical Power Engineering, National University of Sciences and Technology, H-12, Islamabad 44000, Pakistan)

  • Ghullam Mustafa Bhutto

    (Department of Electrical Engineering, Quaid-E-Awam University of Engineering Sciences & Technology, Nawabshah 67480, Pakistan)

  • Claus Leth Bak

    (Department of Energy Technology, Aalborg University, Fredrik Bajers Vej 5, 9100 Aalborg, Denmark)

Abstract

Photovoltaic distributed generation (PVDG) has seen tremendous growth in recent years, especially in the residential sector. Among other concerns, the voltage rise in AC networks is considered the most limiting factor in achieving increased PV penetration levels. A steady-state impact study is performed on a CIGRE low-voltage (LV) residential network. This paper compares six techniques to increase the PV penetration limit in the LV residential network, namely single-phase penetration (SPP), Distribution Scheme 1 (DS1), Distribution Scheme 2 (DS2), alternate phase penetration (APP), offline tap adjustment (OTA) and switched on-load tap adjustment (SOLTA). PSCAD software is used for this study. The best results are obtained for the DS2-SOLTA case that gives the minimum voltage magnitude and voltage unbalance in the system. The steady-state results are validated by a dynamic data study using measured solar irradiance and residential load data. A novel approach is also proposed for calculating the worst day from the data set. The obtained results verify the effectiveness of the proposed approach.

Suggested Citation

  • Musharraf Wajahat & Hassan Abdullah Khalid & Ghullam Mustafa Bhutto & Claus Leth Bak, 2019. "A Comparative Study into Enhancing the PV Penetration Limit of a LV CIGRE Residential Network with Distributed Grid-Tied Single-Phase PV Systems," Energies, MDPI, vol. 12(15), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2964-:d:253674
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/15/2964/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/15/2964/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Majid Ghaffarianfar & Amin Hajizadeh, 2018. "Voltage Stability of Low-Voltage Distribution Grid with High Penetration of Photovoltaic Power Units," Energies, MDPI, vol. 11(8), pages 1-13, July.
    2. Emilio J. Palacios-Garcia & Antonio Moreno-Muñoz & Isabel Santiago & Isabel M. Moreno-Garcia & María I. Milanés-Montero, 2017. "PV Hosting Capacity Analysis and Enhancement Using High Resolution Stochastic Modeling," Energies, MDPI, vol. 10(10), pages 1-22, September.
    3. Tiago E. C. de Oliveira & Pedro M. S. Carvalho & Paulo F. Ribeiro & Benedito D. Bonatto, 2018. "PV Hosting Capacity Dependence on Harmonic Voltage Distortion in Low-Voltage Grids: Model Validation with Experimental Data," Energies, MDPI, vol. 11(2), pages 1-13, February.
    4. Heverton A. Pereira & Allan F. Cupertino & Remus Teodorescu & Selênio R. Silva, 2014. "High Performance Reduced Order Models for Wind Turbines with Full-Scale Converters Applied on Grid Interconnection Studies," Energies, MDPI, vol. 7(11), pages 1-23, November.
    5. Laghari, J.A. & Mokhlis, H. & Karimi, M. & Bakar, A.H.A. & Mohamad, Hasmaini, 2015. "An islanding detection strategy for distribution network connected with hybrid DG resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 662-676.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roman Korab & Marcin Połomski & Marcin Smołka, 2022. "Evaluating the Risk of Exceeding the Normal Operating Conditions of a Low-Voltage Distribution Network due to Photovoltaic Generation," Energies, MDPI, vol. 15(6), pages 1-35, March.
    2. Yesbol Gabdullin & Brian Azzopardi, 2022. "Impacts of Photovoltaics in Low-Voltage Distribution Networks: A Case Study in Malta," Energies, MDPI, vol. 15(18), pages 1-14, September.
    3. Gregorio Fernández & Noemi Galan & Daniel Marquina & Diego Martínez & Alberto Sanchez & Pablo López & Hans Bludszuweit & Jorge Rueda, 2020. "Photovoltaic Generation Impact Analysis in Low Voltage Distribution Grids," Energies, MDPI, vol. 13(17), pages 1-27, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ismael, Sherif M. & Abdel Aleem, Shady H.E. & Abdelaziz, Almoataz Y. & Zobaa, Ahmed F., 2019. "State-of-the-art of hosting capacity in modern power systems with distributed generation," Renewable Energy, Elsevier, vol. 130(C), pages 1002-1020.
    2. Miha Grabner & Andrej Souvent & Nermin Suljanović & Andrej Košir & Boštjan Blažič, 2019. "Probabilistic Methodology for Calculating PV Hosting Capacity in LV Networks Using Actual Building Roof Data," Energies, MDPI, vol. 12(21), pages 1-15, October.
    3. Bayrak, Gökay & Kabalci, Ersan, 2016. "Implementation of a new remote islanding detection method for wind–solar hybrid power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1-15.
    4. Hamdy M. Sultan & Ahmed A. Zaki Diab & Oleg N. Kuznetsov & Ziad M. Ali & Omer Abdalla, 2019. "Evaluation of the Impact of High Penetration Levels of PV Power Plants on the Capacity, Frequency and Voltage Stability of Egypt’s Unified Grid," Energies, MDPI, vol. 12(3), pages 1-22, February.
    5. Md Tariqul Islam & M. J. Hossain, 2023. "Artificial Intelligence for Hosting Capacity Analysis: A Systematic Literature Review," Energies, MDPI, vol. 16(4), pages 1-33, February.
    6. Santiago, I. & Moreno-Munoz, A. & Quintero-Jiménez, P. & Garcia-Torres, F. & Gonzalez-Redondo, M.J., 2021. "Electricity demand during pandemic times: The case of the COVID-19 in Spain," Energy Policy, Elsevier, vol. 148(PA).
    7. Krystyna Kurowska & Hubert Kryszk & Stanisław Bielski, 2022. "Location and Technical Requirements for Photovoltaic Power Stations in Poland," Energies, MDPI, vol. 15(7), pages 1-16, April.
    8. Hwang, Hyunkyeong & Yoon, Ahyun & Yoon, Yongtae & Moon, Seungil, 2023. "Demand response of HVAC systems for hosting capacity improvement in distribution networks: A comprehensive review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    9. Tiago Elias Castelo de Oliveira & Math Bollen & Paulo Fernando Ribeiro & Pedro M. S. de Carvalho & Antônio C. Zambroni & Benedito D. Bonatto, 2019. "The Concept of Dynamic Hosting Capacity for Distributed Energy Resources: Analytics and Practical Considerations," Energies, MDPI, vol. 12(13), pages 1-18, July.
    10. Mir Sayed Shah Danish & Tomonobu Senjyu & Sayed Mir Shah Danish & Najib Rahman Sabory & Narayanan K & Paras Mandal, 2019. "A Recap of Voltage Stability Indices in the Past Three Decades," Energies, MDPI, vol. 12(8), pages 1-18, April.
    11. Luis Hernández-Callejo, 2019. "A Comprehensive Review of Operation and Control, Maintenance and Lifespan Management, Grid Planning and Design, and Metering in Smart Grids," Energies, MDPI, vol. 12(9), pages 1-50, April.
    12. Yunus Yalman & Tayfun Uyanık & İbrahim Atlı & Adnan Tan & Kamil Çağatay Bayındır & Ömer Karal & Saeed Golestan & Josep M. Guerrero, 2022. "Prediction of Voltage Sag Relative Location with Data-Driven Algorithms in Distribution Grid," Energies, MDPI, vol. 15(18), pages 1-16, September.
    13. Babak Arbab-Zavar & Emilio J. Palacios-Garcia & Juan C. Vasquez & Josep M. Guerrero, 2021. "Message Queuing Telemetry Transport Communication Infrastructure for Grid-Connected AC Microgrids Management," Energies, MDPI, vol. 14(18), pages 1-31, September.
    14. Kamran Daniel & Lauri Kütt & Muhammad Naveed Iqbal & Noman Shabbir & Ateeq Ur Rehman & Muhammad Shafiq & Habib Hamam, 2022. "Current Harmonic Aggregation Cases for Contemporary Loads," Energies, MDPI, vol. 15(2), pages 1-15, January.
    15. Khan, Mohammed Ali & Haque, Ahteshamul & Kurukuru, V.S. Bharath & Saad, Mekhilef, 2022. "Islanding detection techniques for grid-connected photovoltaic systems-A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    16. Sherif M. Ismael & Shady H. E. Abdel Aleem & Almoataz Y. Abdelaziz & Ahmed F. Zobaa, 2019. "Probabilistic Hosting Capacity Enhancement in Non-Sinusoidal Power Distribution Systems Using a Hybrid PSOGSA Optimization Algorithm," Energies, MDPI, vol. 12(6), pages 1-23, March.
    17. Kharrazi, A. & Sreeram, V. & Mishra, Y., 2020. "Assessment techniques of the impact of grid-tied rooftop photovoltaic generation on the power quality of low voltage distribution network - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    18. Saheed Lekan Gbadamosi & Nnamdi I. Nwulu & Pierluigi Siano, 2022. "Harmonics Constrained Approach to Composite Power System Expansion Planning with Large-Scale Renewable Energy Sources," Energies, MDPI, vol. 15(11), pages 1-15, June.
    19. Chujia Guo & Aimin Zhang & Hang Zhang & Lei Zhang, 2018. "Adaptive Backstepping Control with Online Parameter Estimator for a Plug-and-Play Parallel Converter System in a Power Switcher," Energies, MDPI, vol. 11(12), pages 1-18, December.
    20. Rani, Preeti & Parkash, Ved & Sharma, Naveen Kumar, 2024. "Technological aspects, utilization and impact on power system for distributed generation: A comprehensive survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2964-:d:253674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.