IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9648-d1008354.html
   My bibliography  Save this article

Relay Protection Setting Calculation System for Nuclear Power Plant Based on B/S Architecture and Cloud Computing

Author

Listed:
  • Yuan Hong

    (School of Information and Electric Engineering, Shandong JiaoTong University, Jinan 250357, China)

  • You Yu

    (State Grid Liaoning Electric Power Co., Ltd., Shenyang 110004, China)

  • Jingfu Tian

    (State Grid Liaoning Electric Power Co., Ltd., Shenyang 110004, China)

  • Han Ye

    (Shan Dong Cheersun Intelligent Technology Co., Ltd., Jinan 250101, China)

  • Bin Wang

    (State Key Lab of Control and Simulation of Power Systems and Generation Equipment, Department of Electrical Engineering Tsinghua University, Haidian District, Beijing 100084, China)

  • Wenxiang Yu

    (Shan Dong Cheersun Intelligent Technology Co., Ltd., Jinan 250101, China)

Abstract

Nuclear power plants have a complex structure and changeable operation mode, which induces low setting calculation efficiency. After analyzing the technology, architecture, and functional logic of a variety of relay protection setting calculation systems and combining the characteristics of the setting calculation of nuclear power plants, the relay protection setting calculation system in nuclear power plants based on B/S architecture and cloud computing is studied in this paper. The system adopts three-tier B/S architecture, applies two key technologies, the cloud computing task distribution synchronization mechanism and the cloud component automatic assembly mechanism, and introduces a particle swarm optimization algorithm to provide technical support for nuclear power plant setting calculation; the running example of the nuclear power plant system fully proves the efficiency and reliability of the relay protection setting calculation system of the nuclear power plant, which has high practical value.

Suggested Citation

  • Yuan Hong & You Yu & Jingfu Tian & Han Ye & Bin Wang & Wenxiang Yu, 2022. "Relay Protection Setting Calculation System for Nuclear Power Plant Based on B/S Architecture and Cloud Computing," Energies, MDPI, vol. 15(24), pages 1-13, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9648-:d:1008354
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9648/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9648/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rene Prenc & Michele Rojnić & Dubravko Franković & Saša Vlahinić, 2022. "On the Development of Overcurrent Relay Optimization Problem for Active Distribution Networks," Energies, MDPI, vol. 15(18), pages 1-28, September.
    2. Abdul Wadood & Chang-Hwan Kim & Tahir Khurshiad & Saeid Gholami Farkoush & Sang-Bong Rhee, 2018. "Application of a Continuous Particle Swarm Optimization (CPSO) for the Optimal Coordination of Overcurrent Relays Considering a Penalty Method," Energies, MDPI, vol. 11(4), pages 1-20, April.
    3. Choong-Koo Chang & Ahmed Mohamed Elmashtoly, 2022. "Protection Coordination Index Assessment Using Fuzzy Logic Controller," Energies, MDPI, vol. 15(4), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen-Cheng Wang & Ngakan Ketut Acwin Dwijendra & Biju Theruvil Sayed & José Ricardo Nuñez Alvarez & Mohammed Al-Bahrani & Aníbal Alviz-Meza & Yulineth Cárdenas-Escrocia, 2023. "Internet of Things Energy Consumption Optimization in Buildings: A Step toward Sustainability," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    2. Xia Zhang & Xiaohua Wang & Zhedong Li & Jingguang Huang & Yupeng Zhang, 2023. "Optimization of Impedance-Accelerated Inverse-Time Over-Current Protection Based on Improved Quantum Genetic Algorithm," Energies, MDPI, vol. 16(3), pages 1-19, January.
    3. Ali Vafadar & Maryam A. Hejazi & Hamed Hashemi-Dezaki & Negin Mohagheghi, 2023. "Optimal Protection Coordination of Active Distribution Networks Using Smart Selection of Short Circuit Voltage-Based Relay Characteristics," Energies, MDPI, vol. 16(14), pages 1-18, July.
    4. Tahir Khurshaid & Abdul Wadood & Saeid Gholami Frakoush & Tae-Hwan Kim & Ki-Chai Kim & Sang-Bong Rhee, 2022. "Optimal Allocation of Directional Relay for Efficient Energy Optimization in a Radial Distribution System," Energies, MDPI, vol. 15(13), pages 1-17, June.
    5. Bakht Muhammad Khan & Abdul Wadood & Shahbaz Khan & Husan Ali & Tahir Khurshaid & Asim Iqbal & Ki Chai Kim, 2024. "Analysis of War Optimization Algorithm in a Multi-Loop Power System Based on Directional Overcurrent Relays," Energies, MDPI, vol. 17(22), pages 1-21, November.
    6. Muhammad Irfan & Abdul Wadood & Tahir Khurshaid & Bakht Muhammad Khan & Ki-Chai Kim & Seung-Ryle Oh & Sang-Bong Rhee, 2021. "An Optimized Adaptive Protection Scheme for Numerical and Directional Overcurrent Relay Coordination Using Harris Hawk Optimization," Energies, MDPI, vol. 14(18), pages 1-21, September.
    7. Abdul Wadood & Tahir Khurshaid & Saeid Gholami Farkoush & Jiangtao Yu & Chang-Hwan Kim & Sang-Bong Rhee, 2019. "Nature-Inspired Whale Optimization Algorithm for Optimal Coordination of Directional Overcurrent Relays in Power Systems," Energies, MDPI, vol. 12(12), pages 1-27, June.
    8. Yuheng Wang & Kashif Habib & Abdul Wadood & Shahbaz Khan, 2023. "The Hybridization of PSO for the Optimal Coordination of Directional Overcurrent Protection Relays of the IEEE Bus System," Energies, MDPI, vol. 16(9), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9648-:d:1008354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.