IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5301-d1191455.html
   My bibliography  Save this article

Optimal Protection Coordination of Active Distribution Networks Using Smart Selection of Short Circuit Voltage-Based Relay Characteristics

Author

Listed:
  • Ali Vafadar

    (Department of Electrical and Computer Engineering, University of Kashan, 6 km Ghotbravandi Blvd, Kashan 8731753153, Iran)

  • Maryam A. Hejazi

    (Department of Electrical and Computer Engineering, University of Kashan, 6 km Ghotbravandi Blvd, Kashan 8731753153, Iran)

  • Hamed Hashemi-Dezaki

    (Department of Electrical and Computer Engineering, University of Kashan, 6 km Ghotbravandi Blvd, Kashan 8731753153, Iran)

  • Negin Mohagheghi

    (Department of Electrical and Computer Engineering, University of Kashan, 6 km Ghotbravandi Blvd, Kashan 8731753153, Iran)

Abstract

Much attention has been paid to the optimized protection of microgrids (MGs) and active distribution networks (ADNs). However, the literature shows a research gap in proposing a hybrid scheme, utilizing the voltage-based and overcurrent-based relays, while the voltage relay characteristics are smartly selected. This study aims to address such a research gap. This article presents an optimal hybrid protection coordination method for ADNs and MGs. Considering that any system fault is associated with a voltage drop, a new protection method is formulated from voltage analysis under fault conditions. The proposed method is independent of the type, size, and location of distributed generation (DG) units, as well as the operation of the distribution system connected to the grid. This method uses only the local voltage to determine the relay’s tripping time and is a low-cost protection method, in addition to the directional overcurrent relays (DOCRs). Optimizing the voltage-based relay characteristics is one of the most important contributions, which leads to improving the protection system speed and its selectivity concerns. The effectiveness of the proposed method has been verified by several simulation tests performed on the medium voltage (MV) distribution system under different fault conditions and DG size and location. The simulation results show that the protection method has appropriate speed, and the protection settings could be independent of the operation modes/topologies and the locations of faults. The comparative results illustrate the advantages of the proposed hybrid protective scheme.

Suggested Citation

  • Ali Vafadar & Maryam A. Hejazi & Hamed Hashemi-Dezaki & Negin Mohagheghi, 2023. "Optimal Protection Coordination of Active Distribution Networks Using Smart Selection of Short Circuit Voltage-Based Relay Characteristics," Energies, MDPI, vol. 16(14), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5301-:d:1191455
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5301/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5301/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rene Prenc & Michele Rojnić & Dubravko Franković & Saša Vlahinić, 2022. "On the Development of Overcurrent Relay Optimization Problem for Active Distribution Networks," Energies, MDPI, vol. 15(18), pages 1-28, September.
    2. Aliakbar Azari & Abass Saberi Noghabi & Farhad Zishan & Oscar Danilo Montoya & Alexander Molina-Cabrera, 2023. "Evaluating the Effect of the Communication Link of the Relays on the Operation Time of the Protection System," Energies, MDPI, vol. 16(6), pages 1-17, March.
    3. Gaurav Yadav & Yuan Liao & Austin D. Burfield, 2023. "Hardware-in-the-Loop Testing for Protective Relays Using Real Time Digital Simulator (RTDS)," Energies, MDPI, vol. 16(3), pages 1-30, January.
    4. Aleksandr Kulikov & Anton Loskutov & Dmitriy Bezdushniy, 2022. "Relay Protection and Automation Algorithms of Electrical Networks Based on Simulation and Machine Learning Methods," Energies, MDPI, vol. 15(18), pages 1-19, September.
    5. Felipe Carvalho Sampaio & Fernando Lessa Tofoli & Lucas Silveira Melo & Giovanni Cordeiro Barroso & Raimundo Furtado Sampaio & Ruth Pastôra Saraiva Leão, 2023. "Smart Protection System for Microgrids with Grid-Connected and Islanded Capabilities Based on an Adaptive Algorithm," Energies, MDPI, vol. 16(5), pages 1-15, February.
    6. Joshua, Ann Mary & Vittal, K. Panduranga, 2023. "Superimposed current based differential protection scheme for AC microgrid feeders," Applied Energy, Elsevier, vol. 341(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan Hong & You Yu & Jingfu Tian & Han Ye & Bin Wang & Wenxiang Yu, 2022. "Relay Protection Setting Calculation System for Nuclear Power Plant Based on B/S Architecture and Cloud Computing," Energies, MDPI, vol. 15(24), pages 1-13, December.
    2. Regin Bose Kannaian & Belwin Brearley Joseph & Raja Prabu Ramachandran, 2023. "An Adaptive Centralized Protection and Relay Coordination Algorithm for Microgrid," Energies, MDPI, vol. 16(12), pages 1-18, June.
    3. Yasar Beyazit Yoldas & Recep Yumurtacı, 2023. "Improvement of Distance Protection with SVM on PV-Fed Transmission Lines in Infeed Conditions," Energies, MDPI, vol. 16(6), pages 1-18, March.
    4. Marco Bindi & Maria Cristina Piccirilli & Antonio Luchetta & Francesco Grasso, 2023. "A Comprehensive Review of Fault Diagnosis and Prognosis Techniques in High Voltage and Medium Voltage Electrical Power Lines," Energies, MDPI, vol. 16(21), pages 1-37, October.
    5. Zhao Jin & Jie Zhang & Shuyuan Wang & Bingda Zhang, 2023. "Component-Oriented Modeling Method for Real-Time Simulation of Power Systems," Energies, MDPI, vol. 16(6), pages 1-19, March.
    6. Aleksandr Kulikov & Anton Loskutov & Dmitriy Bezdushniy & Ilya Petrov, 2023. "Decision Tree Models and Machine Learning Algorithms in the Fault Recognition on Power Lines with Branches," Energies, MDPI, vol. 16(14), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5301-:d:1191455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.