IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i22p5542-d1515124.html
   My bibliography  Save this article

Analysis of War Optimization Algorithm in a Multi-Loop Power System Based on Directional Overcurrent Relays

Author

Listed:
  • Bakht Muhammad Khan

    (Department of Electrical Engineering, Aerospace and Aviation Campus Kamra, Air University, Islamabad 44000, Pakistan)

  • Abdul Wadood

    (Department of Electrical Engineering, Aerospace and Aviation Campus Kamra, Air University, Islamabad 44000, Pakistan
    Renewable Energy and Environmental Technology Center, University of Tabuk, Tabuk 47913, Saudi Arabia
    Electrical Engineering Department, Faculty of Engineering, University of Tabuk, Tabuk 47913, Saudi Arabia)

  • Shahbaz Khan

    (Department of Electrical Engineering, Aerospace and Aviation Campus Kamra, Air University, Islamabad 44000, Pakistan)

  • Husan Ali

    (Department of Electrical Engineering, Aerospace and Aviation Campus Kamra, Air University, Islamabad 44000, Pakistan)

  • Tahir Khurshaid

    (Department of Electrical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea)

  • Asim Iqbal

    (Department of Electrical Engineering, Aerospace and Aviation Campus Kamra, Air University, Islamabad 44000, Pakistan)

  • Ki Chai Kim

    (Department of Electrical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea)

Abstract

In electrical power systems, ensuring a reliable, precise, and efficient relay strategy is crucial for safe and trustworthy operation, especially in multi-loop distribution systems. Overcurrent relays (OCRs) have emerged as effective solutions for these challenges. This study focuses on optimizing the coordination of OCRs to minimize the overall operational time of main relays, thereby reducing power outages. The optimization problem is addressed by adjusting the time multiplier setting (TMS) using the War Strategy Optimization (WSO) algorithm, which efficiently solves this constrained problem. This algorithm mimics ancient warfare strategies of attack and defense to solve complex optimization problems efficiently. The results show that WSO provides superior performance in minimizing total operating time and achieving global optimum solutions with reduced computational effort, outperforming traditional optimization methods (i.e., SM, HPSO, GA, RTO, and JAYA). The proposed algorithm shows a net time gains of 7.77 s, 2.57 s, and 0.8484 s when compared to GA, RTO, and JAYA respectively. This robust protection coordination ensures better reliability and efficiency in multi-loop power systems.

Suggested Citation

  • Bakht Muhammad Khan & Abdul Wadood & Shahbaz Khan & Husan Ali & Tahir Khurshaid & Asim Iqbal & Ki Chai Kim, 2024. "Analysis of War Optimization Algorithm in a Multi-Loop Power System Based on Directional Overcurrent Relays," Energies, MDPI, vol. 17(22), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5542-:d:1515124
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/22/5542/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/22/5542/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Irfan & Abdul Wadood & Tahir Khurshaid & Bakht Muhammad Khan & Ki-Chai Kim & Seung-Ryle Oh & Sang-Bong Rhee, 2021. "An Optimized Adaptive Protection Scheme for Numerical and Directional Overcurrent Relay Coordination Using Harris Hawk Optimization," Energies, MDPI, vol. 14(18), pages 1-21, September.
    2. Abdul Wadood & Chang-Hwan Kim & Tahir Khurshiad & Saeid Gholami Farkoush & Sang-Bong Rhee, 2018. "Application of a Continuous Particle Swarm Optimization (CPSO) for the Optimal Coordination of Overcurrent Relays Considering a Penalty Method," Energies, MDPI, vol. 11(4), pages 1-20, April.
    3. Abdul Wadood & Tahir Khurshaid & Saeid Gholami Farkoush & Jiangtao Yu & Chang-Hwan Kim & Sang-Bong Rhee, 2019. "Nature-Inspired Whale Optimization Algorithm for Optimal Coordination of Directional Overcurrent Relays in Power Systems," Energies, MDPI, vol. 12(12), pages 1-27, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tahir Khurshaid & Abdul Wadood & Saeid Gholami Frakoush & Tae-Hwan Kim & Ki-Chai Kim & Sang-Bong Rhee, 2022. "Optimal Allocation of Directional Relay for Efficient Energy Optimization in a Radial Distribution System," Energies, MDPI, vol. 15(13), pages 1-17, June.
    2. Muhammad Irfan & Abdul Wadood & Tahir Khurshaid & Bakht Muhammad Khan & Ki-Chai Kim & Seung-Ryle Oh & Sang-Bong Rhee, 2021. "An Optimized Adaptive Protection Scheme for Numerical and Directional Overcurrent Relay Coordination Using Harris Hawk Optimization," Energies, MDPI, vol. 14(18), pages 1-21, September.
    3. Abdelmonem Draz & Mahmoud M. Elkholy & Attia A. El-Fergany, 2023. "Automated Settings of Overcurrent Relays Considering Transformer Phase Shift and Distributed Generators Using Gorilla Troops Optimizer," Mathematics, MDPI, vol. 11(3), pages 1-25, February.
    4. Yuheng Wang & Kashif Habib & Abdul Wadood & Shahbaz Khan, 2023. "The Hybridization of PSO for the Optimal Coordination of Directional Overcurrent Protection Relays of the IEEE Bus System," Energies, MDPI, vol. 16(9), pages 1-21, April.
    5. Yuan Hong & You Yu & Jingfu Tian & Han Ye & Bin Wang & Wenxiang Yu, 2022. "Relay Protection Setting Calculation System for Nuclear Power Plant Based on B/S Architecture and Cloud Computing," Energies, MDPI, vol. 15(24), pages 1-13, December.
    6. Wen-Cheng Wang & Ngakan Ketut Acwin Dwijendra & Biju Theruvil Sayed & José Ricardo Nuñez Alvarez & Mohammed Al-Bahrani & Aníbal Alviz-Meza & Yulineth Cárdenas-Escrocia, 2023. "Internet of Things Energy Consumption Optimization in Buildings: A Step toward Sustainability," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    7. Michele Rojnić & Rene Prenc & Hrvoje Bulat & Dubravko Franković, 2022. "A Comprehensive Assessment of Fundamental Overcurrent Relay Operation Optimization Function and Its Constraints," Energies, MDPI, vol. 15(4), pages 1-20, February.
    8. Mahmoud Abdelsalam & Hatem Y. Diab, 2019. "Optimal Coordination of DOC Relays Incorporated into a Distributed Generation-Based Micro-Grid Using a Meta-Heuristic MVO Algorithm," Energies, MDPI, vol. 12(21), pages 1-16, October.
    9. Thiramuni Sisitha Sameera Senarathna & Kullappu Thantrige Manjula Udayanga Hemapala, 2020. "Optimized Adaptive Overcurrent Protection Using Hybridized Nature-Inspired Algorithm and Clustering in Microgrids," Energies, MDPI, vol. 13(13), pages 1-23, June.
    10. Abdul Wadood & Tahir Khurshaid & Saeid Gholami Farkoush & Jiangtao Yu & Chang-Hwan Kim & Sang-Bong Rhee, 2019. "Nature-Inspired Whale Optimization Algorithm for Optimal Coordination of Directional Overcurrent Relays in Power Systems," Energies, MDPI, vol. 12(12), pages 1-27, June.
    11. Tareq Foqha & Maher Khammash & Samer Alsadi & Osama Omari & Shady S. Refaat & Khaled Al-Qawasmi & Ali Elrashidi, 2023. "Optimal Coordination of Directional Overcurrent Relays Using Hybrid Firefly–Genetic Algorithm," Energies, MDPI, vol. 16(14), pages 1-28, July.
    12. Kashif Habib & Xinquan Lai & Abdul Wadood & Shahbaz Khan & Yuheng Wang & Siting Xu, 2022. "An Improved Technique of Hybridization of PSO for the Optimal Coordination of Directional Overcurrent Protection Relays of IEEE Bus System," Energies, MDPI, vol. 15(9), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5542-:d:1515124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.