IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9590-d1006504.html
   My bibliography  Save this article

Methodology to Determine the Management of Demand in Recharging Electric Vehicles in Vertically Integrated Markets Includes Photovoltaic Solar Generation

Author

Listed:
  • Marco Toledo-Orozco

    (Institute for Energy Engineering, Universitat Politècnica de València, Camino de Vera, 46022 Valencia, Spain)

  • Luis Martinez

    (Electrical Engineering Career, Universidad Politécnica Salesiana, Cuenca 010103, Ecuador)

  • Hernán Quito

    (Electrical Engineering Career, Universidad Politécnica Salesiana, Cuenca 010103, Ecuador)

  • Flavio Quizhpi

    (Electrical Engineering Career, Universidad Politécnica Salesiana, Cuenca 010103, Ecuador)

  • Carlos Álvarez-Bel

    (Institute for Energy Engineering, Universitat Politècnica de València, Camino de Vera, 46022 Valencia, Spain)

  • Diego Morales

    (Electrical Engineering Career, Circular Economy Laboratory-CIITT, Universidad Católica de Cuenca, Cuenca 010107, Ecuador)

Abstract

The high penetration of photovoltaic solar generation and electric vehicles in developing countries and with vertically integrated electricity markets with restrictive regulatory policies enhance demand management and the participation of prosumers in optimizing their resources. In this sense, the research presents a demand management methodology based on the prosumer model for recharging electric vehicles through optimization based on linear programming to minimize recharging costs, considering the stochasticity of the solar radiation variables, vehicular mobility patterns, consumer preferences, and optimal location of charging stations through surveys and predictive tools such as PVsyst and GAMS, in such a way that the energy demand for recharging electric vehicles is met. This way, the methodology reduces power demand peaks and mitigates the economic and technical impact on distribution networks. This case study has been modelled with real information from electric vehicles, distribution networks, and surveys in Cuenca, Ecuador.

Suggested Citation

  • Marco Toledo-Orozco & Luis Martinez & Hernán Quito & Flavio Quizhpi & Carlos Álvarez-Bel & Diego Morales, 2022. "Methodology to Determine the Management of Demand in Recharging Electric Vehicles in Vertically Integrated Markets Includes Photovoltaic Solar Generation," Energies, MDPI, vol. 15(24), pages 1-23, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9590-:d:1006504
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9590/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9590/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jean-Michel Clairand, 2019. "Participation of Electric Vehicle Aggregators in Ancillary Services Considering Users’ Preferences," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
    2. Alipour, Manijeh & Mohammadi-Ivatloo, Behnam & Moradi-Dalvand, Mohammad & Zare, Kazem, 2017. "Stochastic scheduling of aggregators of plug-in electric vehicles for participation in energy and ancillary service markets," Energy, Elsevier, vol. 118(C), pages 1168-1179.
    3. Hoarau, Quentin & Perez, Yannick, 2018. "Interactions between electric mobility and photovoltaic generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 510-522.
    4. Jean-Michel Clairand & Javier Rodríguez-García & Carlos Álvarez-Bel, 2018. "Electric Vehicle Charging Strategy for Isolated Systems with High Penetration of Renewable Generation," Energies, MDPI, vol. 11(11), pages 1-21, November.
    5. Jean-Michel Clairand & Carlos Álvarez-Bel & Javier Rodríguez-García & Guillermo Escrivá-Escrivá, 2020. "Impact of Electric Vehicle Charging Strategy on the Long-Term Planning of an Isolated Microgrid," Energies, MDPI, vol. 13(13), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    2. Reza Fachrizal & Joakim Munkhammar, 2020. "Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles," Energies, MDPI, vol. 13(5), pages 1-19, March.
    3. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    4. Hernández, J.C. & Ruiz-Rodriguez, F.J. & Jurado, F., 2017. "Modelling and assessment of the combined technical impact of electric vehicles and photovoltaic generation in radial distribution systems," Energy, Elsevier, vol. 141(C), pages 316-332.
    5. Aghajani, Saemeh & Kalantar, Mohsen, 2017. "Optimal scheduling of distributed energy resources in smart grids: A complementarity approach," Energy, Elsevier, vol. 141(C), pages 2135-2144.
    6. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    7. Siamak Hoseinzadeh & Daniele Groppi & Adriana Scarlet Sferra & Umberto Di Matteo & Davide Astiaso Garcia, 2022. "The PRISMI Plus Toolkit Application to a Grid-Connected Mediterranean Island," Energies, MDPI, vol. 15(22), pages 1-14, November.
    8. Homa Rashidizadeh-Kermani & Hamid Reza Najafi & Amjad Anvari-Moghaddam & Josep M. Guerrero, 2018. "Optimal Decision-Making Strategy of an Electric Vehicle Aggregator in Short-Term Electricity Markets," Energies, MDPI, vol. 11(9), pages 1-20, September.
    9. Cohen, Jed & Azarova, Valeriya & Kollmann, Andrea & Reichl, Johannes, 2019. "Q-complementarity in household adoption of photovoltaics and electricity-intensive goods: The case of electric vehicles," Energy Economics, Elsevier, vol. 83(C), pages 567-577.
    10. Wenz, Klaus-Peter & Serrano-Guerrero, Xavier & Barragán-Escandón, Antonio & González, L.G. & Clairand, Jean-Michel, 2021. "Route prioritization of urban public transportation from conventional to electric buses: A new methodology and a study of case in an intermediate city of Ecuador," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    11. Georg Göhler & Anna-Lena Klingler & Florian Klausmann & Dieter Spath, 2021. "Integrated Modelling of Decentralised Energy Supply in Combination with Electric Vehicle Charging in a Real-Life Case Study," Energies, MDPI, vol. 14(21), pages 1-19, October.
    12. Yi, Tao & Cheng, Xiaobin & Chen, Yaxuan & Liu, Jinpeng, 2020. "Joint optimization of charging station and energy storage economic capacity based on the effect of alternative energy storage of electric vehicle," Energy, Elsevier, vol. 208(C).
    13. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    14. Zahid, Taimoor & Xu, Kun & Li, Weimin & Li, Chenming & Li, Hongzhe, 2018. "State of charge estimation for electric vehicle power battery using advanced machine learning algorithm under diversified drive cycles," Energy, Elsevier, vol. 162(C), pages 871-882.
    15. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    16. Raveendran, Visal & Alvarez-Bel, Carlos & Nair, Manjula G., 2020. "Assessing the ancillary service potential of electric vehicles to support renewable energy integration in touristic islands: A case study from Balearic island of Menorca," Renewable Energy, Elsevier, vol. 161(C), pages 495-509.
    17. Banshwar, Anuj & Sharma, Naveen Kumar & Sood, Yog Raj & Shrivastava, Rajnish, 2017. "Real time procurement of energy and operating reserve from Renewable Energy Sources in deregulated environment considering imbalance penalties," Renewable Energy, Elsevier, vol. 113(C), pages 855-866.
    18. Wojciech Cieslik & Filip Szwajca & Sławomir Rosolski & Michał Rutkowski & Katarzyna Pietrzak & Jakub Wójtowicz, 2022. "Historical Buildings Potential to Power Urban Electromobility: State-of-the-Art and Future Challenges for Nearly Zero Energy Buildings (nZEB) Microgrids," Energies, MDPI, vol. 15(17), pages 1-23, August.
    19. Hoarau, Quentin & Perez, Yannick, 2019. "Network tariff design with prosumers and electromobility: Who wins, who loses?," Energy Economics, Elsevier, vol. 83(C), pages 26-39.
    20. Parinaz Aliasghari & Behnam Mohammadi-Ivatloo & Mehdi Abapour & Ali Ahmadian & Ali Elkamel, 2020. "Goal Programming Application for Contract Pricing of Electric Vehicle Aggregator in Join Day-Ahead Market," Energies, MDPI, vol. 13(7), pages 1-12, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9590-:d:1006504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.