IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9498-d1003587.html
   My bibliography  Save this article

Decarbonizing Thailand’s Economy: A Proposal

Author

Listed:
  • Hon Chung Lau

    (Low Carbon Energies LLC, Bellaire, TX 77401, USA
    Department of Chemical & Biomolecular Engineering, Rice University, Houston, TX 77005, USA)

Abstract

This paper proposes decarbonization pathways for Thailand based on a review of the status of renewable and fossil energies, technology evaluation and scenario studies. Results show that renewable electricity generation needs to grow at a 7.1% average annual growth rate (AAGR) between now and 2050 for the power sector to achieve net-zero by 2050. This would require it to reach 400 TWh, exceeding its technical potential. We propose a more achievable scenario of between 5% and 6% AAGR wherein renewable electricity will grow from 51 TWh to 217–291 TWh between 2020 and 2050. Gas-powered electricity will grow from 127 TWh to 185–111 TWh, requiring carbon capture and storage (CCS) to mitigate 75–45 Mtpa CO 2 by 2050. For the transport sector, electric vehicles have the highest decarbonization potential, but they would add 45 TWh of electricity demand by 2050. For the industry sector, installing CCS in existing plants has the highest decarbonization potential. Overall, CCS is a key decarbonization technology and its large-scale implementation will be needed for Thailand to achieve net-zero by 2050.

Suggested Citation

  • Hon Chung Lau, 2022. "Decarbonizing Thailand’s Economy: A Proposal," Energies, MDPI, vol. 15(24), pages 1-31, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9498-:d:1003587
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9498/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9498/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Salony Rajbhandari & Bundit Limmeechokchai, 2021. "Assessment of greenhouse gas mitigation pathways for Thailand towards achievement of the 2°C and 1.5°C Paris Agreement targets," Climate Policy, Taylor & Francis Journals, vol. 21(4), pages 492-513, April.
    2. Radhanon Diewvilai & Kulyos Audomvongseree, 2022. "Possible Pathways toward Carbon Neutrality in Thailand’s Electricity Sector by 2050 through the Introduction of H 2 Blending in Natural Gas and Solar PV with BESS," Energies, MDPI, vol. 15(11), pages 1-26, May.
    3. Ebbe Bagge Paulsen & Peter Enevoldsen, 2021. "A Multidisciplinary Review of Recycling Methods for End-of-Life Wind Turbine Blades," Energies, MDPI, vol. 14(14), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corinna Köpke & Jennifer Mielniczek & Alexander Stolz, 2023. "Testing Resilience Aspects of Operation Options for Offshore Wind Farms beyond the End-of-Life," Energies, MDPI, vol. 16(12), pages 1-12, June.
    2. Li, Chen & Mogollón, José M. & Tukker, Arnold & Dong, Jianning & von Terzi, Dominic & Zhang, Chunbo & Steubing, Bernhard, 2022. "Future material requirements for global sustainable offshore wind energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    3. Gennitsaris, Stavros & Sagani, Angeliki & Sofianopoulou, Stella & Dedoussis, Vassilis, 2023. "Integrated LCA and DEA approach for circular economy-driven performance evaluation of wind turbine end-of-life treatment options," Applied Energy, Elsevier, vol. 339(C).
    4. Siripha Junlakarn & Radhanon Diewvilai & Kulyos Audomvongseree, 2022. "Stochastic Modeling of Renewable Energy Sources for Capacity Credit Evaluation," Energies, MDPI, vol. 15(14), pages 1-27, July.
    5. Lund, K.W. & Madsen, E.S., 2024. "State-of-the-art value chain roadmap for sustainable end-of-life wind turbine blades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    6. Jagu Schippers, Emma & Massol, Olivier, 2022. "Unlocking CO2 infrastructure deployment: The impact of carbon removal accounting," Energy Policy, Elsevier, vol. 171(C).
    7. Radhanon Diewvilai & Kulyos Audomvongseree, 2022. "Optimal Loss of Load Expectation for Generation Expansion Planning Considering Fuel Unavailability," Energies, MDPI, vol. 15(21), pages 1-17, October.
    8. Betancour, Johan & Romero-Menco, Fredys & Velásquez, Laura & Rubio-Clemente, Ainhoa & Chica, Edwin, 2023. "Design and optimization of a runner for a gravitational vortex turbine using the response surface methodology and experimental tests," Renewable Energy, Elsevier, vol. 210(C), pages 306-320.
    9. Gian Paolo Clemente & Alessandra Cornaro & Rosanna Grassi & Giorgio Rizzini, 2022. "Strategic energy flows in input-output relations: a temporal multilayer approach," Papers 2212.11585, arXiv.org.
    10. Hon Chung Lau & Steve C. Tsai, 2022. "A Decarbonization Roadmap for Taiwan and Its Energy Policy Implications," Sustainability, MDPI, vol. 14(14), pages 1-34, July.
    11. Lund, Kristine Wilhelm & Nielsen, Mikkel Liep & Madsen, Erik Skov, 2023. "Sustainability assessment of new technologies using multi criteria decision making: A framework and application in sectioning end-of-life wind turbine blades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    12. Spyridoula Karavida & Angeliki Peponi, 2023. "Wind Turbine Blade Waste Circularity Coupled with Urban Regeneration: A Conceptual Framework," Energies, MDPI, vol. 16(3), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9498-:d:1003587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.