IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2212.11585.html
   My bibliography  Save this paper

Strategic energy flows in input-output relations: a temporal multilayer approach

Author

Listed:
  • Gian Paolo Clemente
  • Alessandra Cornaro
  • Rosanna Grassi
  • Giorgio Rizzini

Abstract

The energy consumption, the transfer of resources through the international trade, the transition towards renewable energies and the environmental sustainability appear as key drivers in order to evaluate the resilience of the energy systems. Concerning the consumptions, in the literature a great attention has been paid to direct energy, but the production of goods and services also involves indirect energy. Hence, in this work we consider different types of embodied energy sources and the time evolution of the sectors' and countries' interactions. Flows are indeed used to construct a directed and weighted temporal multilayer network based respectively on renewable and non-renewable sources, where sectors are nodes and layers are countries. We provide a methodological approach for analysing the network reliability and resilience and for identifying critical sectors and economies in the system by applying the Multi-Dimensional HITS algorithm. Then, we evaluate central arcs in the network at each time period by proposing a novel topological indicator based on the maximum flow problem. In this way, we provide a full view of economies, sectors and connections that play a relevant role over time in the network and whose removal could heavily affect the stability of the system. We provide a numerical analysis based on the embodied energy flows among countries and sectors in the period from 1990 to 2016. Results prove that the methods are effective in catching the different patterns between renewable and non-renewable energy sources.

Suggested Citation

  • Gian Paolo Clemente & Alessandra Cornaro & Rosanna Grassi & Giorgio Rizzini, 2022. "Strategic energy flows in input-output relations: a temporal multilayer approach," Papers 2212.11585, arXiv.org.
  • Handle: RePEc:arx:papers:2212.11585
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2212.11585
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alessandra Cornaro & Giorgio Rizzini, 2022. "Environmentally extended input-output analysis in complex networks: a multilayer approach," Papers 2206.08745, arXiv.org.
    2. Brown, M. T. & Herendeen, R. A., 1996. "Embodied energy analysis and EMERGY analysis: a comparative view," Ecological Economics, Elsevier, vol. 19(3), pages 219-235, December.
    3. Thomson, Harriet & Snell, Carolyn, 2013. "Quantifying the prevalence of fuel poverty across the European Union," Energy Policy, Elsevier, vol. 52(C), pages 563-572.
    4. Andrew F. Fritzsche, 1989. "The Health Risks of Energy Production," Risk Analysis, John Wiley & Sons, vol. 9(4), pages 565-577, December.
    5. Hao, Xiaoqing & An, Haizhong & Qi, Hai & Gao, Xiangyun, 2016. "Evolution of the exergy flow network embodied in the global fossil energy trade: Based on complex network," Applied Energy, Elsevier, vol. 162(C), pages 1515-1522.
    6. Manfred Lenzen & Daniel Moran & Keiichiro Kanemoto & Arne Geschke, 2013. "Building Eora: A Global Multi-Region Input-Output Database At High Country And Sector Resolution," Economic Systems Research, Taylor & Francis Journals, vol. 25(1), pages 20-49, March.
    7. Shi, Jianglan & Li, Huajiao & Guan, Jianhe & Sun, Xiaoqi & Guan, Qing & Liu, Xiaojia, 2017. "Evolutionary features of global embodied energy flow between sectors: A complex network approach," Energy, Elsevier, vol. 140(P1), pages 395-405.
    8. Chen, B. & Li, J.S. & Wu, X.F. & Han, M.Y. & Zeng, L. & Li, Z. & Chen, G.Q., 2018. "Global energy flows embodied in international trade: A combination of environmentally extended input–output analysis and complex network analysis," Applied Energy, Elsevier, vol. 210(C), pages 98-107.
    9. Saeed Solaymani, 2021. "A Review on Energy and Renewable Energy Policies in Iran," Sustainability, MDPI, vol. 13(13), pages 1-23, June.
    10. Sun, Xudong & Li, Jiashuo & Qiao, Han & Zhang, Bo, 2017. "Energy implications of China's regional development: New insights from multi-regional input-output analysis," Applied Energy, Elsevier, vol. 196(C), pages 118-131.
    11. Jannis Langer & Jaco Quist & Kornelis Blok, 2021. "Review of Renewable Energy Potentials in Indonesia and Their Contribution to a 100% Renewable Electricity System," Energies, MDPI, vol. 14(21), pages 1-21, October.
    12. Overland, Indra & Juraev, Javlon & Vakulchuk, Roman, 2022. "Are renewable energy sources more evenly distributed than fossil fuels?," Renewable Energy, Elsevier, vol. 200(C), pages 379-386.
    13. Radhanon Diewvilai & Kulyos Audomvongseree, 2022. "Possible Pathways toward Carbon Neutrality in Thailand’s Electricity Sector by 2050 through the Introduction of H 2 Blending in Natural Gas and Solar PV with BESS," Energies, MDPI, vol. 15(11), pages 1-26, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Miaohan & Hong, Jingke & Liu, Guiwen & Shen, Geoffrey Qiping, 2019. "Exploring energy flows embodied in China's economy from the regional and sectoral perspectives via combination of multi-regional input–output analysis and a complex network approach," Energy, Elsevier, vol. 170(C), pages 1191-1201.
    2. Ren, Bo & Li, Huajiao & Shi, Jianglan & Ma, Ning & Qi, Yajie, 2022. "Detecting the control and dependence relationships within the global embodied energy trade network," Energy, Elsevier, vol. 238(PB).
    3. An, Pengli & Li, Huajiao & Shi, Jianglan & Li, Yiming, 2023. "Competition intensity of energy flow among Chinese sectors from a two-mode network perspective," Energy, Elsevier, vol. 285(C).
    4. Chen, B. & Li, J.S. & Wu, X.F. & Han, M.Y. & Zeng, L. & Li, Z. & Chen, G.Q., 2018. "Global energy flows embodied in international trade: A combination of environmentally extended input–output analysis and complex network analysis," Applied Energy, Elsevier, vol. 210(C), pages 98-107.
    5. Han, Mengyao & Xiong, Jiao & Yang, Yu, 2023. "Comparisons between direct and embodied natural gas networks: Topology, dependency and vulnerability," Energy, Elsevier, vol. 280(C).
    6. Zhijun Feng & Wen Zhou & Qian Ming, 2019. "Embodied Energy Flow Patterns of the Internal and External Industries of Manufacturing in China," Sustainability, MDPI, vol. 11(2), pages 1-24, January.
    7. Kan, S.Y. & Chen, B. & Wu, X.F. & Chen, Z.M. & Chen, G.Q., 2019. "Natural gas overview for world economy: From primary supply to final demand via global supply chains," Energy Policy, Elsevier, vol. 124(C), pages 215-225.
    8. Zhang, Shuai & Yang, Dewei & Ji, Yijia & Meng, Haishan & Zhou, Tian & Zhang, Junmei & Yang, Hang, 2024. "Spatio-temporal patterns and cascading risks of embodied energy flows in China," Energy, Elsevier, vol. 298(C).
    9. Yue Fu & Long Xue & Yixin Yan & Yao Pan & Xiaofang Wu & Ying Shao, 2021. "Energy Network Embodied in Trade along the Belt and Road: Spatiotemporal Evolution and Influencing Factors," Sustainability, MDPI, vol. 13(19), pages 1-29, September.
    10. An, Qier & Wang, Lang & Qu, Debin & Zhang, Hujun, 2018. "Dependency network of international oil trade before and after oil price drop," Energy, Elsevier, vol. 165(PA), pages 1021-1033.
    11. Wu, Gang & Pu, Yue & Shu, Tianran, 2021. "Features and evolution of global energy trade network based on domestic value-added decomposition of export," Energy, Elsevier, vol. 228(C).
    12. Ke Zhang & Xingwei Wang, 2021. "Pollution Haven Hypothesis of Global CO 2 , SO 2 , NO x —Evidence from 43 Economies and 56 Sectors," IJERPH, MDPI, vol. 18(12), pages 1-27, June.
    13. Cai, Xiaomei & Liu, Chan & Zheng, Shuxian & Hu, Han & Tan, Zhanglu, 2023. "Analysis on the evolution characteristics of barite international trade pattern based on complex networks," Resources Policy, Elsevier, vol. 83(C).
    14. Jiang, Meihui & An, Haizhong & Guan, Qing & Sun, Xiaoqi, 2018. "Global embodied mineral flow between industrial sectors: A network perspective," Resources Policy, Elsevier, vol. 58(C), pages 192-201.
    15. Jinghan Chen & Wen Zhou & Hongtao Yang, 2019. "Is Embodied Energy a Better Starting Point for Solving Energy Security Issues?—Based on an Overview of Embodied Energy-Related Research," Sustainability, MDPI, vol. 11(16), pages 1-22, August.
    16. Cheng, Mengyao & Wu, Jialu & Li, Chaohui & Jia, Yuanxin & Xia, Xiaohua, 2023. "Tele-connection of global agricultural land network: Incorporating complex network approach with multi-regional input-output analysis," Land Use Policy, Elsevier, vol. 125(C).
    17. Usubiaga-Liaño, Arkaitz & Arto, Iñaki & Acosta-Fernández, José, 2021. "Double accounting in energy footprint and related assessments: How common is it and what are the consequences?," Energy, Elsevier, vol. 222(C).
    18. Sofia Berdysheva & Svetlana Ikonnikova, 2021. "The Energy Transition and Shifts in Fossil Fuel Use: The Study of International Energy Trade and Energy Security Dynamics," Energies, MDPI, vol. 14(17), pages 1-26, August.
    19. Guo, Shan & Zheng, Shupeng & Hu, Yunhao & Hong, Jingke & Wu, Xiaofang & Tang, Miaohan, 2019. "Embodied energy use in the global construction industry," Applied Energy, Elsevier, vol. 256(C).
    20. Xu, Zhenci & Zhang, Di & McCord, Paul & Gong, Mimi & Liu, Jianguo, 2019. "Shift in a national virtual energy network," Applied Energy, Elsevier, vol. 242(C), pages 561-569.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2212.11585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.