IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5103-d861568.html
   My bibliography  Save this article

Stochastic Modeling of Renewable Energy Sources for Capacity Credit Evaluation

Author

Listed:
  • Siripha Junlakarn

    (Energy Research Institute, Chulalongkorn University, Bangkok 10330, Thailand)

  • Radhanon Diewvilai

    (Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand)

  • Kulyos Audomvongseree

    (Energy Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
    Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand)

Abstract

In power system planning, the growth of renewable energy generation leads to several challenges including system reliability due to its intermittency and uncertainty. To quantify the relatively reliable capacity of this generation, capacity credit is usually adopted for long-term power system planning. This paper proposes an evaluation of the capacity credit of renewable energy generation using stochastic models for resource availability. Six renewable energy generation types including wind, solar PV, small hydro, biomass, biogas, and waste were considered. The proposed models are based on the stochastic process using the Wiener process and other probability distribution functions to explain the randomness of the intermittency. Moreover, for solar PV—the generation of which depends on two key random variables, namely irradiance and temperature—a copula function is used to model their joint probabilistic behavior. These proposed models are used to simulate power outputs of renewable energy generations and then determine the capacity credit which is defined as the capacity of conventional generation that can maintain a similar level of system reliability. The proposed method is tested with Thailand’s power system and the results show that the capacity credit depends on the time of day and the size of installed capacity of the considered renewable energy generation.

Suggested Citation

  • Siripha Junlakarn & Radhanon Diewvilai & Kulyos Audomvongseree, 2022. "Stochastic Modeling of Renewable Energy Sources for Capacity Credit Evaluation," Energies, MDPI, vol. 15(14), pages 1-27, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5103-:d:861568
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5103/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5103/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sergey Obukhov & Emad M. Ahmed & Denis Y. Davydov & Talal Alharbi & Ahmed Ibrahim & Ziad M. Ali, 2021. "Modeling Wind Speed Based on Fractional Ornstein-Uhlenbeck Process," Energies, MDPI, vol. 14(17), pages 1-15, September.
    2. Dai Cui & Fei Xu & Weichun Ge & Pengxiang Huang & Yunhai Zhou, 2020. "A Coordinated Dispatching Model Considering Generation and Operation Reserve in Wind Power-Photovoltaic-Pumped Storage System," Energies, MDPI, vol. 13(18), pages 1-24, September.
    3. Gerres, Timo & Chaves Ávila, José Pablo & Martín Martínez, Francisco & Abbad, Michel Rivier & Arín, Rafael Cossent & Sánchez Miralles, Álvaro, 2019. "Rethinking the electricity market design: Remuneration mechanisms to reach high RES shares. Results from a Spanish case study," Energy Policy, Elsevier, vol. 129(C), pages 1320-1330.
    4. Mukherjee, C. & Denney, J. & Mbonimpa, E.G. & Slagley, J. & Bhowmik, R., 2020. "A review on municipal solid waste-to-energy trends in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Arenas-López, J. Pablo & Badaoui, Mohamed, 2020. "Stochastic modelling of wind speeds based on turbulence intensity," Renewable Energy, Elsevier, vol. 155(C), pages 10-22.
    6. Radhanon Diewvilai & Kulyos Audomvongseree, 2021. "Generation Expansion Planning with Energy Storage Systems Considering Renewable Energy Generation Profiles and Full-Year Hourly Power Balance Constraints," Energies, MDPI, vol. 14(18), pages 1-25, September.
    7. Csereklyei, Zsuzsanna & Qu, Songze & Ancev, Tihomir, 2021. "Are electricity system outages and the generation mix related? Evidence from NSW, Australia," Energy Economics, Elsevier, vol. 99(C).
    8. Ekata Kaushik & Vivek Prakash & Om Prakash Mahela & Baseem Khan & Adel El-Shahat & Almoataz Y. Abdelaziz, 2022. "Comprehensive Overview of Power System Flexibility during the Scenario of High Penetration of Renewable Energy in Utility Grid," Energies, MDPI, vol. 15(2), pages 1-29, January.
    9. Talari, Saber & Shafie-khah, Miadreza & Osório, Gerardo J. & Aghaei, Jamshid & Catalão, João P.S., 2018. "Stochastic modelling of renewable energy sources from operators' point-of-view: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1953-1965.
    10. Zhou, Ella & Cole, Wesley & Frew, Bethany, 2018. "Valuing variable renewable energy for peak demand requirements," Energy, Elsevier, vol. 165(PA), pages 499-511.
    11. Radhanon Diewvilai & Kulyos Audomvongseree, 2022. "Possible Pathways toward Carbon Neutrality in Thailand’s Electricity Sector by 2050 through the Introduction of H 2 Blending in Natural Gas and Solar PV with BESS," Energies, MDPI, vol. 15(11), pages 1-26, May.
    12. Ramírez, Andres Felipe & Valencia, Carlos Felipe & Cabrales, Sergio & Ramírez, Carlos G., 2021. "Simulation of photo-voltaic power generation using copula autoregressive models for solar irradiance and air temperature time series," Renewable Energy, Elsevier, vol. 175(C), pages 44-67.
    13. Uwe Hassler, 2016. "Stochastic Processes and Calculus," Springer Texts in Business and Economics, Springer, edition 1, number 978-3-319-23428-1, June.
    14. Firouzi, Mohsen & Samimi, Abouzar & Salami, Abolfazl, 2022. "Reliability evaluation of a composite power system in the presence of renewable generations," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    15. Marco Navia & Renan Orellana & Sulmayra Zaráte & Mauricio Villazón & Sergio Balderrama & Sylvain Quoilin, 2022. "Energy Transition Planning with High Penetration of Variable Renewable Energy in Developing Countries: The Case of the Bolivian Interconnected Power System," Energies, MDPI, vol. 15(3), pages 1-35, January.
    16. Epari Ritesh Patro & Teegala Srinivasa Kishore & Ali Torabi Haghighi, 2022. "Levelized Cost of Electricity Generation by Small Hydropower Projects under Clean Development Mechanism in India," Energies, MDPI, vol. 15(4), pages 1-16, February.
    17. Loukatou, Angeliki & Howell, Sydney & Johnson, Paul & Duck, Peter, 2018. "Stochastic wind speed modelling for estimation of expected wind power output," Applied Energy, Elsevier, vol. 228(C), pages 1328-1340.
    18. Beyza, Jesus & Yusta, Jose M., 2021. "The effects of the high penetration of renewable energies on the reliability and vulnerability of interconnected electric power systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    19. Mahsa Z. Farahmand & M. E. Nazari & S. Shamlou & Miadreza Shafie-khah, 2021. "The Simultaneous Impacts of Seasonal Weather and Solar Conditions on PV Panels Electrical Characteristics," Energies, MDPI, vol. 14(4), pages 1-19, February.
    20. Heleen L. Soest & Michel G. J. Elzen & Detlef P. Vuuren, 2021. "Net-zero emission targets for major emitting countries consistent with the Paris Agreement," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    21. Teegala Srinivasa Kishore & Epari Ritesh Patro & V. S. K. V. Harish & Ali Torabi Haghighi, 2021. "A Comprehensive Study on the Recent Progress and Trends in Development of Small Hydropower Projects," Energies, MDPI, vol. 14(10), pages 1-31, May.
    22. Milligan, Michael & Porter, Kevin, 2006. "The Capacity Value of Wind in the United States: Methods and Implementation," The Electricity Journal, Elsevier, vol. 19(2), pages 91-99, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Radhanon Diewvilai & Kulyos Audomvongseree, 2022. "Optimal Loss of Load Expectation for Generation Expansion Planning Considering Fuel Unavailability," Energies, MDPI, vol. 15(21), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guanjun Liu & Chao Wang & Hui Qin & Jialong Fu & Qin Shen, 2022. "A Novel Hybrid Machine Learning Model for Wind Speed Probabilistic Forecasting," Energies, MDPI, vol. 15(19), pages 1-16, September.
    2. Radhanon Diewvilai & Kulyos Audomvongseree, 2022. "Optimal Loss of Load Expectation for Generation Expansion Planning Considering Fuel Unavailability," Energies, MDPI, vol. 15(21), pages 1-17, October.
    3. Jain, Tanmay & Verma, Kusum, 2024. "Reliability based computational model for stochastic unit commitment of a bulk power system integrated with volatile wind power," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    4. Zou, Yanhua & ÄŒepin, Marko, 2024. "Loss of load probability for power systems based on renewable sources," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    5. Xu, Tingting & Gao, Weijun & Qian, Fanyue & Li, Yanxue, 2022. "The implementation limitation of variable renewable energies and its impacts on the public power grid," Energy, Elsevier, vol. 239(PA).
    6. Bojana Škrbić & Željko Đurišić, 2023. "Novel Planning Methodology for Spatially Optimized RES Development Which Minimizes Flexibility Requirements for Their Integration into the Power System," Energies, MDPI, vol. 16(7), pages 1-34, April.
    7. Robert Giel & Artur Kierzkowski, 2021. "A Fuzzy Multi-Criteria Model for Municipal Waste Treatment Systems Evaluation including Energy Recovery," Energies, MDPI, vol. 15(1), pages 1-16, December.
    8. Arenas-López, J. Pablo & Badaoui, Mohamed, 2020. "The Ornstein-Uhlenbeck process for estimating wind power under a memoryless transformation," Energy, Elsevier, vol. 213(C).
    9. Agnieszka Kuś & Dorota Grego-Planer, 2021. "A Model of Innovation Activity in Small Enterprises in the Context of Selected Financial Factors: The Example of the Renewable Energy Sector," Energies, MDPI, vol. 14(10), pages 1-17, May.
    10. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    11. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    12. Ewa Chomać-Pierzecka & Andrzej Kokiel & Joanna Rogozińska-Mitrut & Anna Sobczak & Dariusz Soboń & Jacek Stasiak, 2022. "Hydropower in the Energy Market in Poland and the Baltic States in the Light of the Challenges of Sustainable Development-An Overview of the Current State and Development Potential," Energies, MDPI, vol. 15(19), pages 1-19, October.
    13. Feras Alasali & Mohammad Salameh & Ali Semrin & Khaled Nusair & Naser El-Naily & William Holderbaum, 2022. "Optimal Controllers and Configurations of 100% PV and Energy Storage Systems for a Microgrid: The Case Study of a Small Town in Jordan," Sustainability, MDPI, vol. 14(13), pages 1-20, July.
    14. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    15. Wilkinson, Sam & Maticka, Martin J. & Liu, Yue & John, Michele, 2021. "The duck curve in a drying pond: The impact of rooftop PV on the Western Australian electricity market transition," Utilities Policy, Elsevier, vol. 71(C).
    16. Xiao, Qing & Zhou, Shaowu, 2018. "Probabilistic power flow computation considering correlated wind speeds," Applied Energy, Elsevier, vol. 231(C), pages 677-685.
    17. Salman, Muhammad & Long, Xingle & Wang, Guimei & Zha, Donglan, 2022. "Paris climate agreement and global environmental efficiency: New evidence from fuzzy regression discontinuity design," Energy Policy, Elsevier, vol. 168(C).
    18. Kalyani Makarand Kurundkar & Geetanjali Abhijit Vaidya, 2023. "Stochastic Security-Constrained Economic Dispatch of Load-Following and Contingency Reserves Ancillary Service Using a Grid-Connected Microgrid during Uncertainty," Energies, MDPI, vol. 16(6), pages 1-25, March.
    19. Siqueira, Mario B. & Monteiro Filho, Arthur, 2021. "Hybrid concentrating solar-landfill gas power-generation concept for landfill energy recovery," Applied Energy, Elsevier, vol. 298(C).
    20. Ferraz de Campos, Victor Arruda & Silva, Valter Bruno & Cardoso, João Sousa & Brito, Paulo S. & Tuna, Celso Eduardo & Silveira, José Luz, 2021. "A review of waste management in Brazil and Portugal: Waste-to-energy as pathway for sustainable development," Renewable Energy, Elsevier, vol. 178(C), pages 802-820.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5103-:d:861568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.