IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8290-d964813.html
   My bibliography  Save this article

Framework for the Automated Identification of Possible District Heating Separations to Utilise Present Heat Sources Based on Existing Network Topology

Author

Listed:
  • Jan Stock

    (Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Energy Systems Engineering (IEK-10), 52425 Jülich, Germany)

  • André Xhonneux

    (Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Energy Systems Engineering (IEK-10), 52425 Jülich, Germany)

  • Dirk Müller

    (Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Energy Systems Engineering (IEK-10), 52425 Jülich, Germany
    E.ON Energy Research Center, Institute for Energy Efficient Buildings and Indoor Climate, RWTH Aachen University, 52056 Aachen, Germany)

Abstract

The ambitious climate targets of the European Union emphasise the necessity to reduce carbon dioxide emissions in the building sector. Therefore, various sustainable heat sources should be used in existing district heating systems to cover the heat demands of buildings. However, integrating on-site heat sources into large existing district heating networks could be challenging due to temperature or capacity limitations since such large district heating systems are often supplied by large fossil-based heating plants. Most sustainable heat sources that should be utilised in district heating systems differ in their geographical locations or have limited heat capacities and, therefore, cannot easily replace conventional heating plants. The resulting difficulty of integrating limited heat sources into large district heating networks could be tackled by separating the existing network structure into two independent heat distribution networks. In this study, we present a developed framework that automatically recommends which network parts of an existing district heating system could be hydraulically separated in order to utilise a present heat source that is not yet in use. In this way, a second, standalone district heating system, supplied by the utilised heat source, could be established. The framework applies a community detection algorithm to the existing district heating network to first identify communities in the structure. Neighbouring communities are aggregated to larger network areas, taking into account that these areas could be supplied with the available amount of heat. These network areas are classified as possible areas for separation if the shortest connection path to the utilised heat source is within a certain distance. Subsequently, the found possibilities for network separation are simulated to test a feasible district heating operation and to evaluate the environmental and economic impacts. The presented framework is tested with a meshed and a spanning-tree network structure. Overall, the developed framework presents an approach to utilise present heat sources in separated network structures by automatically identifying, testing and evaluating possible network separations.

Suggested Citation

  • Jan Stock & André Xhonneux & Dirk Müller, 2022. "Framework for the Automated Identification of Possible District Heating Separations to Utilise Present Heat Sources Based on Existing Network Topology," Energies, MDPI, vol. 15(21), pages 1-31, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8290-:d:964813
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8290/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8290/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tol, H.İ. & Svendsen, S., 2012. "Improving the dimensioning of piping networks and network layouts in low-energy district heating systems connected to low-energy buildings: A case study in Roskilde, Denmark," Energy, Elsevier, vol. 38(1), pages 276-290.
    2. Rämä, Miika & Wahlroos, Mikko, 2018. "Introduction of new decentralised renewable heat supply in an existing district heating system," Energy, Elsevier, vol. 154(C), pages 68-79.
    3. Lund, Rasmus & Persson, Urban, 2016. "Mapping of potential heat sources for heat pumps for district heating in Denmark," Energy, Elsevier, vol. 110(C), pages 129-138.
    4. Arpagaus, Cordin & Bless, Frédéric & Uhlmann, Michael & Schiffmann, Jürg & Bertsch, Stefan S., 2018. "High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials," Energy, Elsevier, vol. 152(C), pages 985-1010.
    5. Winterscheid, Carlo & Dalenbäck, Jan-Olof & Holler, Stefan, 2017. "Integration of solar thermal systems in existing district heating systems," Energy, Elsevier, vol. 137(C), pages 579-585.
    6. Francesco Neirotti & Michel Noussan & Stefano Riverso & Giorgio Manganini, 2019. "Analysis of Different Strategies for Lowering the Operation Temperature in Existing District Heating Networks," Energies, MDPI, vol. 12(2), pages 1-17, January.
    7. Formhals, Julian & Feike, Frederik & Hemmatabady, Hoofar & Welsch, Bastian & Sass, Ingo, 2021. "Strategies for a transition towards a solar district heating grid with integrated seasonal geothermal energy storage," Energy, Elsevier, vol. 228(C).
    8. Huang, Pei & Copertaro, Benedetta & Zhang, Xingxing & Shen, Jingchun & Löfgren, Isabelle & Rönnelid, Mats & Fahlen, Jan & Andersson, Dan & Svanfeldt, Mikael, 2020. "A review of data centers as prosumers in district energy systems: Renewable energy integration and waste heat reuse for district heating," Applied Energy, Elsevier, vol. 258(C).
    9. Pelda, Johannes & Holler, Stefan & Persson, Urban, 2021. "District heating atlas - Analysis of the German district heating sector," Energy, Elsevier, vol. 233(C).
    10. Nussbaumer, T. & Thalmann, S., 2016. "Influence of system design on heat distribution costs in district heating," Energy, Elsevier, vol. 101(C), pages 496-505.
    11. Kontu, K. & Rinne, S. & Junnila, S., 2019. "Introducing modern heat pumps to existing district heating systems – Global lessons from viable decarbonizing of district heating in Finland," Energy, Elsevier, vol. 166(C), pages 862-870.
    12. Jodeiri, A.M. & Goldsworthy, M.J. & Buffa, S. & Cozzini, M., 2022. "Role of sustainable heat sources in transition towards fourth generation district heating – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    13. Nord, Natasa & Shakerin, Mohammad & Tereshchenko, Tymofii & Verda, Vittorio & Borchiellini, Romano, 2021. "Data informed physical models for district heating grids with distributed heat sources to understand thermal and hydraulic aspects," Energy, Elsevier, vol. 222(C).
    14. Michael Mans & Tobias Blacha & Thomas Schreiber & Dirk Müller, 2022. "Development and Application of an Open-Source Framework for Automated Thermal Network Generation and Simulations in Modelica," Energies, MDPI, vol. 15(12), pages 1-25, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    2. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Pauli Hiltunen & Sanna Syri, 2020. "Highly Renewable District Heat for Espoo Utilizing Waste Heat Sources," Energies, MDPI, vol. 13(14), pages 1-21, July.
    4. Østergaard, Poul Alberg & Andersen, Anders N. & Sorknæs, Peter, 2022. "The business-economic energy system modelling tool energyPRO," Energy, Elsevier, vol. 257(C).
    5. Giulia Spirito & Alice Dénarié & Fabrizio Fattori & Mario Motta & Samuel Macchi & Urban Persson, 2021. "Potential Diffusion of Renewables-Based DH Assessment through Clustering and Mapping: A Case Study in Milano," Energies, MDPI, vol. 14(9), pages 1-30, May.
    6. Dino, Giuseppe Edoardo & Catrini, Pietro & Buscemi, Alessandro & Piacentino, Antonio & Palomba, Valeria & Frazzica, Andrea, 2023. "Modeling of a bidirectional substation in a district heating network: Validation, dynamic analysis, and application to a solar prosumer," Energy, Elsevier, vol. 284(C).
    7. Manz, Pia & Billerbeck, Anna & Kök, Ali & Fallahnejad, Mostafa & Fleiter, Tobias & Kranzl, Lukas & Braungardt, Sibylle & Eichhammer, Wolfgang, 2024. "Spatial analysis of renewable and excess heat potentials for climate-neutral district heating in Europe," Renewable Energy, Elsevier, vol. 224(C).
    8. Li, Haoran & Hou, Juan & Hong, Tianzhen & Nord, Natasa, 2022. "Distinguish between the economic optimal and lowest distribution temperatures for heat-prosumer-based district heating systems with short-term thermal energy storage," Energy, Elsevier, vol. 248(C).
    9. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    10. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    11. Mohammadnia, Ali & Iov, Florin & Rasmussen, Morten Karstoft & Nielsen, Mads Pagh, 2024. "Feasibility assessment of next-generation smart district heating networks by intelligent energy management strategies," Energy, Elsevier, vol. 296(C).
    12. Aliana, Arnau & Chang, Miguel & Østergaard, Poul Alberg & Victoria, Marta & Andersen, Anders N., 2022. "Performance assessment of using various solar radiation data in modelling large-scale solar thermal systems integrated in district heating networks," Renewable Energy, Elsevier, vol. 190(C), pages 699-712.
    13. Rämä, Miika & Wahlroos, Mikko, 2018. "Introduction of new decentralised renewable heat supply in an existing district heating system," Energy, Elsevier, vol. 154(C), pages 68-79.
    14. Ziemele, Jelena & Gravelsins, Armands & Blumberga, Andra & Blumberga, Dagnija, 2017. "Sustainability of heat energy tariff in district heating system: Statistic and dynamic methodologies," Energy, Elsevier, vol. 137(C), pages 834-845.
    15. Jerez Monsalves, Juan & Bergaentzlé, Claire & Keles, Dogan, 2023. "Impacts of flexible-cooling and waste-heat recovery from data centres on energy systems: A Danish case study," Energy, Elsevier, vol. 281(C).
    16. Marco Pellegrini & Augusto Bianchini, 2018. "The Innovative Concept of Cold District Heating Networks: A Literature Review," Energies, MDPI, vol. 11(1), pages 1-16, January.
    17. Alessandro Guzzini & Marco Pellegrini & Edoardo Pelliconi & Cesare Saccani, 2020. "Low Temperature District Heating: An Expert Opinion Survey," Energies, MDPI, vol. 13(4), pages 1-34, February.
    18. Walch, Alina & Li, Xiang & Chambers, Jonathan & Mohajeri, Nahid & Yilmaz, Selin & Patel, Martin & Scartezzini, Jean-Louis, 2022. "Shallow geothermal energy potential for heating and cooling of buildings with regeneration under climate change scenarios," Energy, Elsevier, vol. 244(PB).
    19. Tomc, Urban & Nosan, Simon & Vidrih, Boris & Bogić, Simon & Navickaite, Kristina & Vozel, Katja & Bobič, Miha & Kitanovski, Andrej, 2024. "Small demonstrator of a thermoelectric heat-pump booster for an ultra-low-temperature district-heating substation," Applied Energy, Elsevier, vol. 361(C).
    20. Jebamalai, Joseph Maria & Marlein, Kurt & Laverge, Jelle, 2022. "Design and cost comparison of district heating and cooling (DHC) network configurations using ring topology – A case study," Energy, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8290-:d:964813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.