IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8210-d962599.html
   My bibliography  Save this article

Maximum Power Point Tracking for Photovoltaic Systems Operating under Partially Shaded Conditions Using SALP Swarm Algorithm

Author

Listed:
  • Lilia Tightiz

    (School of Computing, Gachon University, 1342 Seongnamdaero, Seongnam 13120, Korea)

  • Saeedeh Mansouri

    (Faculty of Electrical and Computer Engineering, Babol Noushirvaniy University of Technology, Babol 4714873113, Iran)

  • Farhad Zishan

    (Department of Electrical Engineering, Sahand University of Technology, Tabriz 5513351996, Iran)

  • Joon Yoo

    (School of Computing, Gachon University, 1342 Seongnamdaero, Seongnam 13120, Korea)

  • Nima Shafaghatian

    (Electrical Engineering Departments, Zanjan University, Zanja 387914537, Iran)

Abstract

This article presents a new method based on meta-heuristic algorithm for maximum power point tracking (MPPT) in photovoltaic systems. In this new method, the SALP Swarm Algorithm (SSA) is used instead of classic methods such as the Perturb and Observe (P&O) method. In this method, the value of the duty cycle is optimally determined in an optimization problem by SSA in order to track the maximum power. The objective function in this problem is maximizing the output power of the photovoltaic system. The proposed method has been applied on a photovoltaic system connected to the load, taking into account the effect of partial shade and different atmospheric conditions. The SSA method is compared with the Particle Swarm Optimization (PSO) algorithm and P&O methods. Additionally, we evaluated the effect of changes in temperature and radiation on solving the problem. The results of the simulation in the MATLAB/Simulink environment show the optimal performance of the proposed method in tracking the maximum power in different atmospheric conditions compared to other methods. To validate the proposed algorithm, it is compared with four important indexes: ISE, ITSE, IAE, and ITAE.

Suggested Citation

  • Lilia Tightiz & Saeedeh Mansouri & Farhad Zishan & Joon Yoo & Nima Shafaghatian, 2022. "Maximum Power Point Tracking for Photovoltaic Systems Operating under Partially Shaded Conditions Using SALP Swarm Algorithm," Energies, MDPI, vol. 15(21), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8210-:d:962599
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8210/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8210/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Bochao & Pei, Jianzhong & Calautit, John Kaiser & Zhang, Jiupeng & Yong, Ling Xin & Pantua, Conrad Allan Jay, 2022. "Analysis of mechanical response and energy efficiency of a pavement integrated photovoltaic/thermal system (PIPVT)," Renewable Energy, Elsevier, vol. 194(C), pages 1-12.
    2. Catalina González-Castaño & Carlos Restrepo & Javier Revelo-Fuelagán & Leandro L. Lorente-Leyva & Diego H. Peluffo-Ordóñez, 2021. "A Fast-Tracking Hybrid MPPT Based on Surface-Based Polynomial Fitting and P&O Methods for Solar PV under Partial Shaded Conditions," Mathematics, MDPI, vol. 9(21), pages 1-23, October.
    3. Sajid Sarwar & Muhammad Yaqoob Javed & Mujtaba Hussain Jaffery & Muhammad Saqib Ashraf & Muhammad Talha Naveed & Muhammad Annas Hafeez, 2022. "Modular Level Power Electronics (MLPE) Based Distributed PV System for Partial Shaded Conditions," Energies, MDPI, vol. 15(13), pages 1-39, June.
    4. Kamran Ali & Laiq Khan & Qudrat Khan & Shafaat Ullah & Saghir Ahmad & Sidra Mumtaz & Fazal Wahab Karam & Naghmash, 2019. "Robust Integral Backstepping Based Nonlinear MPPT Control for a PV System," Energies, MDPI, vol. 12(16), pages 1-20, August.
    5. Li, Guiqiang & Li, Jinpeng & Yang, Ruoxi & Chen, Xiangjie, 2022. "Performance analysis of a hybrid hydrogen production system in the integrations of PV/T power generation electrolytic water and photothermal cooperative reaction," Applied Energy, Elsevier, vol. 323(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu Liu & Yun Zeng, 2023. "Intelligent ISSA-Based Non-Singular Terminal Sliding-Mode Control of DC–DC Boost Converter Feeding a Constant Power Load System," Energies, MDPI, vol. 16(13), pages 1-23, June.
    2. Fatemeh Jamshidi & Mohammad Reza Salehizadeh & Reza Yazdani & Brian Azzopardi & Vibhu Jately, 2023. "An Improved Sliding Mode Controller for MPP Tracking of Photovoltaics," Energies, MDPI, vol. 16(5), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bu, Fan & Yan, Da & Tan, Gang & Sun, Hongsan & An, Jingjing, 2023. "Acceleration algorithms for long-wavelength radiation integral in the annual simulation of radiative cooling in buildings," Renewable Energy, Elsevier, vol. 202(C), pages 255-269.
    2. Lu, Yashun & Li, Guiqiang, 2023. "Potential application of electrical performance enhancement methods in PV/T module," Energy, Elsevier, vol. 281(C).
    3. Li, Jinpeng & Chen, Xiangjie & Li, Guiqiang, 2023. "Effect of separation wavelength on a novel solar-driven hybrid hydrogen production system (SDHPS) by solar full spectrum energy," Renewable Energy, Elsevier, vol. 215(C).
    4. Wang, Yangyang & Liu, Yangyang & Xu, Zaifeng & Yin, Kexin & Zhou, Yaru & Zhang, Jifu & Cui, Peizhe & Ma, Shinan & Wang, Yinglong & Zhu, Zhaoyou, 2024. "A review on renewable energy-based chemical engineering design and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Omer Saleem & Shehryaar Ali & Jamshed Iqbal, 2023. "Robust MPPT Control of Stand-Alone Photovoltaic Systems via Adaptive Self-Adjusting Fractional Order PID Controller," Energies, MDPI, vol. 16(13), pages 1-20, June.
    6. Gu, Xufei & Ying, Zhi & Zheng, Xiaoyuan & Dou, Binlin & Cui, Guomin, 2023. "Photovoltaic-based energy system coupled with energy storage for all-day stable PEM electrolytic hydrogen production," Renewable Energy, Elsevier, vol. 209(C), pages 53-62.
    7. Zaheer Alam & Qudrat Khan & Laiq Khan & Safeer Ullah & Syed Abdul Mannan Kirmani & Abdullah A. Algethami, 2022. "Certainty-Equivalence-Based Sensorless Robust Sliding Mode Control for Maximum Power Extraction of an Uncertain Photovoltaic System," Energies, MDPI, vol. 15(6), pages 1-17, March.
    8. Miaomiao Ma & Xiangjie Liu & Kwang Y. Lee, 2020. "Maximum Power Point Tracking and Voltage Regulation of Two-Stage Grid-Tied PV System Based on Model Predictive Control," Energies, MDPI, vol. 13(6), pages 1-16, March.
    9. Jorge Sousa & Inês Azevedo & Cristina Camus & Luís Mendes & Carla Viveiros & Filipe Barata, 2024. "Decarbonizing Hard-to-Abate Sectors with Renewable Hydrogen: A Real Case Application to the Ceramics Industry," Energies, MDPI, vol. 17(15), pages 1-15, July.
    10. Zhang, Yijie & Ma, Tao & Yang, Hongxing & Li, Zongyu & Wang, Yuhong, 2023. "Simulation and experimental study on the energy performance of a pre-fabricated photovoltaic pavement," Applied Energy, Elsevier, vol. 342(C).
    11. Mohamed Benghanem & Adel Mellit & Hamad Almohamadi & Sofiane Haddad & Nedjwa Chettibi & Abdulaziz M. Alanazi & Drigos Dasalla & Ahmed Alzahrani, 2023. "Hydrogen Production Methods Based on Solar and Wind Energy: A Review," Energies, MDPI, vol. 16(2), pages 1-31, January.
    12. Wen, Xin & Ji, Jie & Li, Zhaomeng & Song, Zhiying, 2023. "Performance assessment of the hybrid PV-MCHP-TE system integrated with PCM in all-day operation: A preliminary numerical investigation," Energy, Elsevier, vol. 278(PA).
    13. Joo, Chonghyo & Lee, Jaewon & Kim, Yurim & Cho, Hyungtae & Gu, Boram & Kim, Junghwan, 2024. "A novel on-site SMR process integrated with a hollow fiber membrane module for efficient blue hydrogen production: Modeling, validation, and techno-economic analysis," Applied Energy, Elsevier, vol. 354(PB).
    14. Josué F. Rosales-Pérez & Andrés Villarruel-Jaramillo & José A. Romero-Ramos & Manuel Pérez-García & José M. Cardemil & Rodrigo Escobar, 2023. "Hybrid System of Photovoltaic and Solar Thermal Technologies for Industrial Process Heat," Energies, MDPI, vol. 16(5), pages 1-45, February.
    15. Shahzad Ahmed & Hafiz Mian Muhammad Adil & Iftikhar Ahmad & Muhammad Kashif Azeem & Zil e Huma & Safdar Abbas Khan, 2020. "Supertwisting Sliding Mode Algorithm Based Nonlinear MPPT Control for a Solar PV System with Artificial Neural Networks Based Reference Generation," Energies, MDPI, vol. 13(14), pages 1-24, July.
    16. Ngoc Thien Le & Thanh Le Truong & Widhyakorn Asdornwised & Surachai Chaitusaney & Watit Benjapolakul, 2023. "Energy Production Analysis of Rooftop PV Systems Equipped with Module-Level Power Electronics under Partial Shading Conditions Based on Mixed-Effects Model," Energies, MDPI, vol. 16(2), pages 1-15, January.
    17. Wang, Ningbo & Guo, Yanhua & Liu, Lu & Shao, Shuangquan, 2024. "Numerical assessment and optimization of photovoltaic-based hydrogen-oxygen Co-production energy system: A machine learning and multi-objective strategy," Renewable Energy, Elsevier, vol. 227(C).
    18. Dong, Hao & Fang, Juan & Yan, Xiangyu & Lu, Buchu & Liu, Qibin & Liu, Xunliang, 2024. "Experimental investigation of solar hydrogen production via photo-thermal driven steam methane reforming," Applied Energy, Elsevier, vol. 368(C).
    19. Roberto De Fazio & Mariangela De Giorgi & Donato Cafagna & Carolina Del-Valle-Soto & Paolo Visconti, 2023. "Energy Harvesting Technologies and Devices from Vehicular Transit and Natural Sources on Roads for a Sustainable Transport: State-of-the-Art Analysis and Commercial Solutions," Energies, MDPI, vol. 16(7), pages 1-46, March.
    20. Galal Al-Muthanna & Shuhua Fang & Ibrahim AL-Wesabi & Khaled Ameur & Hossam Kotb & Kareem M. AboRas & Hassan Z. Al Garni & Abdullahi Abubakar Mas’ud, 2023. "A High Speed MPPT Control Utilizing a Hybrid PSO-PID Controller under Partially Shaded Photovoltaic Battery Chargers," Sustainability, MDPI, vol. 15(4), pages 1-28, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8210-:d:962599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.