IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7370-d935813.html
   My bibliography  Save this article

Modified Levy-based Particle Swarm Optimization (MLPSO) with Boost Converter for Local and Global Point Tracking

Author

Listed:
  • Chanuri Charin

    (School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Pulau Pinang 14300, Malaysia
    Faculty of Electrical Engineering and Technology, Universiti Malaysia Perlis, Perlis 02600, Malaysia)

  • Dahaman Ishak

    (School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Pulau Pinang 14300, Malaysia)

  • Muhammad Ammirrul Atiqi Mohd Zainuri

    (Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Selangor 43600, Malaysia)

  • Baharuddin Ismail

    (Faculty of Electrical Engineering and Technology, Universiti Malaysia Perlis, Perlis 02600, Malaysia)

  • Turki Alsuwian

    (Electrical Engineering Department, College of Engineering, Najran University, Najran 11001, Saudi Arabia)

  • Adam R. H. Alhawari

    (Electrical Engineering Department, College of Engineering, Najran University, Najran 11001, Saudi Arabia)

Abstract

This paper presents a modified Levy particle swarm optimization (MLPSO) to improve the capability of maximum power point tracking (MPPT) under various partial shading conditions. This method is aimed primarily at resolving the tendency to trap at the local optimum particularly during shading conditions. By applying a Levy search to the particle swarm optimization (PSO), the randomness of the step size is not limited to a specific value, allowing for full exploration throughout the power-voltage (P-V) curve. Therefore, the problem such as immature convergence or being trapped at a local maximum power point can be avoided. The proposed method comes with great advantages in terms of consistent solutions over various environmental changes with a small number of particles. To verify the effectiveness of the proposed idea, the algorithm was tested on a boost converter of a photovoltaic (PV) energy system. Both simulation and experimental results showed that the proposed algorithm has a high efficiency and fast-tracking speed compared to the conventional HC and PSO algorithm under various shading conditions. Based on the results, it was found that the proposed algorithm successfully converges most rapidly to the global maximum power point (GMPP) and that the tracking of GMPP under complex partial shading is guaranteed. Furthermore, the average efficiency for all test conditions was 99% with a tracking speed of 1.5 s to 3.0 s and an average output steady-state oscillation of 0.89%.

Suggested Citation

  • Chanuri Charin & Dahaman Ishak & Muhammad Ammirrul Atiqi Mohd Zainuri & Baharuddin Ismail & Turki Alsuwian & Adam R. H. Alhawari, 2022. "Modified Levy-based Particle Swarm Optimization (MLPSO) with Boost Converter for Local and Global Point Tracking," Energies, MDPI, vol. 15(19), pages 1-30, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7370-:d:935813
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7370/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7370/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saravanan, S. & Ramesh Babu, N., 2016. "Maximum power point tracking algorithms for photovoltaic system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 192-204.
    2. Haidar Islam & Saad Mekhilef & Noraisyah Binti Mohamed Shah & Tey Kok Soon & Mehdi Seyedmahmousian & Ben Horan & Alex Stojcevski, 2018. "Performance Evaluation of Maximum Power Point Tracking Approaches and Photovoltaic Systems," Energies, MDPI, vol. 11(2), pages 1-24, February.
    3. Ramli, Mohd Zulkifli & Salam, Zainal, 2019. "Performance evaluation of dc power optimizer (DCPO) for photovoltaic (PV) system during partial shading," Renewable Energy, Elsevier, vol. 139(C), pages 1336-1354.
    4. Neeraj Priyadarshi & Vigna K. Ramachandaramurthy & Sanjeevikumar Padmanaban & Farooque Azam, 2019. "An Ant Colony Optimized MPPT for Standalone Hybrid PV-Wind Power System with Single Cuk Converter," Energies, MDPI, vol. 12(1), pages 1-23, January.
    5. Ahmed, Jubaer & Salam, Zainal, 2015. "An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency," Applied Energy, Elsevier, vol. 150(C), pages 97-108.
    6. Eltamaly, Ali M., 2021. "A novel musical chairs algorithm applied for MPPT of PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    7. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    8. Silvestre, S. & Boronat, A. & Chouder, A., 2009. "Study of bypass diodes configuration on PV modules," Applied Energy, Elsevier, vol. 86(9), pages 1632-1640, September.
    9. Muhannad Alshareef & Zhengyu Lin & Mingyao Ma & Wenping Cao, 2019. "Accelerated Particle Swarm Optimization for Photovoltaic Maximum Power Point Tracking under Partial Shading Conditions," Energies, MDPI, vol. 12(4), pages 1-18, February.
    10. Bendib, Boualem & Belmili, Hocine & Krim, Fateh, 2015. "A survey of the most used MPPT methods: Conventional and advanced algorithms applied for photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 637-648.
    11. Sajid Sarwar & Muhammad Yaqoob Javed & Mujtaba Hussain Jaffery & Muhammad Saqib Ashraf & Muhammad Talha Naveed & Muhammad Annas Hafeez, 2022. "Modular Level Power Electronics (MLPE) Based Distributed PV System for Partial Shaded Conditions," Energies, MDPI, vol. 15(13), pages 1-39, June.
    12. Shahrooz Hajighorbani & Mohd Amran Mohd Radzi & Mohd Zainal Abidin Ab Kadir & Suhaidi Shafie, 2015. "Dual Search Maximum Power Point (DSMPP) Algorithm Based on Mathematical Analysis under Shaded Conditions," Energies, MDPI, vol. 8(10), pages 1-31, October.
    13. Sajid Sarwar & Muhammad Annas Hafeez & Muhammad Yaqoob Javed & Aamer Bilal Asghar & Krzysztof Ejsmont, 2022. "A Horse Herd Optimization Algorithm (HOA)-Based MPPT Technique under Partial and Complex Partial Shading Conditions," Energies, MDPI, vol. 15(5), pages 1-22, March.
    14. Ahmed, Jubaer & Salam, Zainal, 2014. "A Maximum Power Point Tracking (MPPT) for PV system using Cuckoo Search with partial shading capability," Applied Energy, Elsevier, vol. 119(C), pages 118-130.
    15. Eltamaly, Ali M. & Al-Saud, M.S. & Abokhalil, Ahmed G. & Farh, Hassan M.H., 2020. "Simulation and experimental validation of fast adaptive particle swarm optimization strategy for photovoltaic global peak tracker under dynamic partial shading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belhachat, Faiza & Larbes, Cherif, 2017. "Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 875-889.
    2. Kermadi, Mostefa & Berkouk, El Madjid, 2017. "Artificial intelligence-based maximum power point tracking controllers for Photovoltaic systems: Comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 369-386.
    3. Jordehi, A. Rezaee, 2016. "Maximum power point tracking in photovoltaic (PV) systems: A review of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1127-1138.
    4. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    5. Kuei-Hsiang Chao & Muhammad Nursyam Rizal, 2021. "A Hybrid MPPT Controller Based on the Genetic Algorithm and Ant Colony Optimization for Photovoltaic Systems under Partially Shaded Conditions," Energies, MDPI, vol. 14(10), pages 1-17, May.
    6. Zahra Bel Hadj Salah & Saber Krim & Mohamed Ali Hajjaji & Badr M. Alshammari & Khalid Alqunun & Ahmed Alzamil & Tawfik Guesmi, 2023. "A New Efficient Cuckoo Search MPPT Algorithm Based on a Super-Twisting Sliding Mode Controller for Partially Shaded Standalone Photovoltaic System," Sustainability, MDPI, vol. 15(12), pages 1-38, June.
    7. Alfredo Gil-Velasco & Carlos Aguilar-Castillo, 2021. "A Modification of the Perturb and Observe Method to Improve the Energy Harvesting of PV Systems under Partial Shading Conditions," Energies, MDPI, vol. 14(9), pages 1-12, April.
    8. Osmani, Khaled & Haddad, Ahmad & Lemenand, Thierry & Castanier, Bruno & Ramadan, Mohamad, 2021. "An investigation on maximum power extraction algorithms from PV systems with corresponding DC-DC converters," Energy, Elsevier, vol. 224(C).
    9. Das, Soubhagya K. & Verma, Deepak & Nema, Savita & Nema, R.K., 2017. "Shading mitigation techniques: State-of-the-art in photovoltaic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 369-390.
    10. Ahmad, R. & Murtaza, Ali F. & Ahmed Sher, Hadeed & Tabrez Shami, Umar & Olalekan, Saheed, 2017. "An analytical approach to study partial shading effects on PV array supported by literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 721-732.
    11. Manoharan Premkumar & Umashankar Subramaniam & Thanikanti Sudhakar Babu & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2020. "Evaluation of Mathematical Model to Characterize the Performance of Conventional and Hybrid PV Array Topologies under Static and Dynamic Shading Patterns," Energies, MDPI, vol. 13(12), pages 1-37, June.
    12. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    13. Abderrazek Saoudi & Saber Krim & Mohamed Faouzi Mimouni, 2021. "Enhanced Intelligent Closed Loop Direct Torque and Flux Control of Induction Motor for Standalone Photovoltaic Water Pumping System," Energies, MDPI, vol. 14(24), pages 1-21, December.
    14. Mostafa Ahmed & Mohamed Abdelrahem & Ibrahim Harbi & Ralph Kennel, 2020. "An Adaptive Model-Based MPPT Technique with Drift-Avoidance for Grid-Connected PV Systems," Energies, MDPI, vol. 13(24), pages 1-25, December.
    15. Guo, Lei & Meng, Zhuo & Sun, Yize & Wang, Libiao, 2018. "A modified cat swarm optimization based maximum power point tracking method for photovoltaic system under partially shaded condition," Energy, Elsevier, vol. 144(C), pages 501-514.
    16. Abbes Kihal & Fateh Krim & Billel Talbi & Abdelbaset Laib & Abdeslem Sahli, 2018. "A Robust Control of Two-Stage Grid-Tied PV Systems Employing Integral Sliding Mode Theory," Energies, MDPI, vol. 11(10), pages 1-21, October.
    17. Arshdeep Singh & Shimi Sudha Letha, 2019. "Emerging energy sources for electric vehicle charging station," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(5), pages 2043-2082, October.
    18. Fathabadi, Hassan, 2016. "Novel fast dynamic MPPT (maximum power point tracking) technique with the capability of very high accurate power tracking," Energy, Elsevier, vol. 94(C), pages 466-475.
    19. Yılmaz, Mehmet & Kaleli, Alirıza & Çorapsız, Muhammed Fatih, 2023. "Machine learning based dynamic super twisting sliding mode controller for increase speed and accuracy of MPPT using real-time data under PSCs," Renewable Energy, Elsevier, vol. 219(P1).
    20. Li, Shaowu, 2016. "Linear equivalent models at the maximum power point based on variable weather parameters for photovoltaic cell," Applied Energy, Elsevier, vol. 182(C), pages 94-104.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7370-:d:935813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.