IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p2029-d768552.html
   My bibliography  Save this article

Certainty-Equivalence-Based Sensorless Robust Sliding Mode Control for Maximum Power Extraction of an Uncertain Photovoltaic System

Author

Listed:
  • Zaheer Alam

    (Electrical Engineering Department, COMSATS University Islamabad, Abbottabad 22060, Pakistan)

  • Qudrat Khan

    (Centre for Advanced Studies in Telecommunications (CAST), Islamabad Campus, COMSATS University Islamabad, Islamabad 45550, Pakistan)

  • Laiq Khan

    (Department of Electrical and Computer Engineering, COMSATS University Islamabad, Islamabad 45550, Pakistan)

  • Safeer Ullah

    (Department of Electrical and Computer Engineering, COMSATS University Islamabad, Islamabad 45550, Pakistan)

  • Syed Abdul Mannan Kirmani

    (Centre for Advanced Studies in Telecommunications (CAST), Islamabad Campus, COMSATS University Islamabad, Islamabad 45550, Pakistan)

  • Abdullah A. Algethami

    (Department of Engineering, Taif University, Taif 11099, Saudi Arabia)

Abstract

Photovoltaic (PV) arrays and their electronic converters are subject to various environmental disturbances and component-related faults that affect their normal operations and result in a considerable energy loss. Therefore, it is ever demanding to design such closed-loop operating algorithms that tolerate faults, present acceptable performance, and avoid wear and tear in the systems. In this work, the core objective is to extract maximum power from a PV array subject to environmental disturbances and plant uncertainties. The system is considered under input channel uncertainties (i.e., faults) along with variable resistive load and charging stations. A neuro-fuzzy network (NFN)-based reference voltage is generated to extract maximum power while considering variable temperature and irradiance as inputs. Furthermore, the estimated reference is tracked by the actual PV voltage under two types of controllers: certainty-equivalence-based robust sliding mode (CERSMC) and certainty-equivalence-based robust integral sliding mode (CERISMC). These strategies benefit from improving the robustness against faults (disturbances). The proposed methods use the inductor current, which is recovered via the velocity observer and the flatness property of nonlinear systems. The system’s stability is proven in the form of very appealing theorems. These claims are validated by the simulation results, which are carried out in a MATLAB environment.

Suggested Citation

  • Zaheer Alam & Qudrat Khan & Laiq Khan & Safeer Ullah & Syed Abdul Mannan Kirmani & Abdullah A. Algethami, 2022. "Certainty-Equivalence-Based Sensorless Robust Sliding Mode Control for Maximum Power Extraction of an Uncertain Photovoltaic System," Energies, MDPI, vol. 15(6), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2029-:d:768552
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/2029/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/2029/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reza Reisi, Ali & Hassan Moradi, Mohammad & Jamasb, Shahriar, 2013. "Classification and comparison of maximum power point tracking techniques for photovoltaic system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 433-443.
    2. Kamran Ali & Laiq Khan & Qudrat Khan & Shafaat Ullah & Saghir Ahmad & Sidra Mumtaz & Fazal Wahab Karam & Naghmash, 2019. "Robust Integral Backstepping Based Nonlinear MPPT Control for a PV System," Energies, MDPI, vol. 12(16), pages 1-20, August.
    3. Punitha, K. & Devaraj, D. & Sakthivel, S., 2013. "Artificial neural network based modified incremental conductance algorithm for maximum power point tracking in photovoltaic system under partial shading conditions," Energy, Elsevier, vol. 62(C), pages 330-340.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    2. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    3. Nabipour, M. & Razaz, M. & Seifossadat, S.GH & Mortazavi, S.S., 2017. "A new MPPT scheme based on a novel fuzzy approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1147-1169.
    4. Rajesh, R. & Carolin Mabel, M., 2015. "A comprehensive review of photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 231-248.
    5. Messalti, Sabir & Harrag, Abdelghani & Loukriz, Abdelhamid, 2017. "A new variable step size neural networks MPPT controller: Review, simulation and hardware implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 221-233.
    6. Seyedmahmoudian, M. & Horan, B. & Soon, T. Kok & Rahmani, R. & Than Oo, A. Muang & Mekhilef, S. & Stojcevski, A., 2016. "State of the art artificial intelligence-based MPPT techniques for mitigating partial shading effects on PV systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 435-455.
    7. Amjad Ali & K. Almutairi & Muhammad Zeeshan Malik & Kashif Irshad & Vineet Tirth & Salem Algarni & Md. Hasan Zahir & Saiful Islam & Md Shafiullah & Neeraj Kumar Shukla, 2020. "Review of Online and Soft Computing Maximum Power Point Tracking Techniques under Non-Uniform Solar Irradiation Conditions," Energies, MDPI, vol. 13(12), pages 1-37, June.
    8. Mellit, Adel & Kalogirou, Soteris A., 2014. "MPPT-based artificial intelligence techniques for photovoltaic systems and its implementation into field programmable gate array chips: Review of current status and future perspectives," Energy, Elsevier, vol. 70(C), pages 1-21.
    9. Verma, Deepak & Nema, Savita & Shandilya, A.M. & Dash, Soubhagya K., 2016. "Maximum power point tracking (MPPT) techniques: Recapitulation in solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1018-1034.
    10. Celikel, Resat & Yilmaz, Musa & Gundogdu, Ahmet, 2022. "A voltage scanning-based MPPT method for PV power systems under complex partial shading conditions," Renewable Energy, Elsevier, vol. 184(C), pages 361-373.
    11. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    12. Pieter Bauwens & Jan Doutreloigne, 2019. "Switch for the Optimization of Module Power by Reconfiguration of All Strings (SOMBRA): An Insulated Integrated Switch for a Reconfigurable Solar Panel," Energies, MDPI, vol. 12(21), pages 1-17, November.
    13. Hirvonen, Janne & Kayo, Genku & Cao, Sunliang & Hasan, Ala & Sirén, Kai, 2015. "Renewable energy production support schemes for residential-scale solar photovoltaic systems in Nordic conditions," Energy Policy, Elsevier, vol. 79(C), pages 72-86.
    14. Chatterjee, Shantanu & Kumar, Prashant & Chatterjee, Saibal, 2018. "A techno-commercial review on grid connected photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2371-2397.
    15. Jiang, Joe-Air & Su, Yu-Li & Kuo, Kun-Chang & Wang, Chien-Hao & Liao, Min-Sheng & Wang, Jen-Cheng & Huang, Chen-Kang & Chou, Cheng-Ying & Lee, Chien-Hsing & Shieh, Jyh-Cherng, 2017. "On a hybrid MPPT control scheme to improve energy harvesting performance of traditional two-stage inverters used in photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1113-1128.
    16. Başoğlu, Mustafa Engin & Çakır, Bekir, 2016. "Comparisons of MPPT performances of isolated and non-isolated DC–DC converters by using a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1100-1113.
    17. Kebir, Anouer & Woodward, Lyne & Akhrif, Ouassima, 2019. "Real-time optimization of renewable energy sources power using neural network-based anticipative extremum-seeking control," Renewable Energy, Elsevier, vol. 134(C), pages 914-926.
    18. Kolesnik, Sergei & Sitbon, Moshe & Gadelovits, Shlomo & Suntio, Teuvo & Kuperman, Alon, 2015. "Interfacing renewable energy sources for maximum power transfer—Part II: Dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1771-1783.
    19. Harrou, Fouzi & Sun, Ying & Taghezouit, Bilal & Saidi, Ahmed & Hamlati, Mohamed-Elkarim, 2018. "Reliable fault detection and diagnosis of photovoltaic systems based on statistical monitoring approaches," Renewable Energy, Elsevier, vol. 116(PA), pages 22-37.
    20. Marcin Walczak & Leszek Bychto, 2023. "Transients in Input and Output Signals in DC–DC Converters Working in Maximum Power Point Tracking Systems," Energies, MDPI, vol. 16(12), pages 1-12, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2029-:d:768552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.