IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p7932-d953178.html
   My bibliography  Save this article

Potential of the Synthetic Fuel Oxymethylene Ether (OME) for the Usage in a Single-Cylinder Non-Road Diesel Engine: Thermodynamics and Emissions

Author

Listed:
  • Florian Zacherl

    (Ostbayerische Technische Hochschule (OTH) Regensburg, Laboratory of Combustion Engines and Emission Control, Seybothstraße 2, 93053 Regensburg, Germany)

  • Christoph Wopper

    (Ostbayerische Technische Hochschule (OTH) Regensburg, Laboratory of Combustion Engines and Emission Control, Seybothstraße 2, 93053 Regensburg, Germany)

  • Peter Schwanzer

    (Scale MT GmbH, Franz-Mayer-Straße 1, 93053 Regensburg, Germany)

  • Hans-Peter Rabl

    (Ostbayerische Technische Hochschule (OTH) Regensburg, Laboratory of Combustion Engines and Emission Control, Seybothstraße 2, 93053 Regensburg, Germany)

Abstract

Non-road sectors, such as agriculture and construction machinery, require high energy densities and flexibility in use, which is why diesel engines are mainly used. The use of climate-neutral fuels, produced from renewable energies, such as Oxymethylene Ether (OME) as a diesel substitute, can significantly reduce CO 2 and pollutant emissions in these sectors. In addition to CO 2 neutrality, OME also offers improved combustion characteristics compared to diesel fuel, eliminating the soot–NO x trade-off and thus enabling new opportunities in engine design and calibration. In this paper, the combustion of pure OME on a close-to-production, single-cylinder non-road diesel engine with a pump–line–nozzle injection system is analyzed. A variation of the center of combustion at constant power output was performed for diesel and OME at different operating points. Two injectors were investigated with OME. A study on ignition delay and a detailed thermodynamic analysis was carried out. In addition, the exhaust emissions CO, NO x , V O C , as well as particulate-matter, -number and -size distributions were measured. With OME, a significantly shorter ignition delay as well as a shortened combustion duration could be observed, despite a longer injection duration. In addition, the maximum injection pressure increases. V O C and CO emissions are reduced. Particulate matter was reduced by more than 99% and particle number (>10 nm) was reduced by multiple orders of magnitude. The median of the particle size distribution shifts from 60 to 85 nm (diesel) into a diameter range of sub 23 nm (OME). A significant reduction of NO x emissions with OME enables new degrees of freedom in engine calibration and an efficiency advantage without hardware adaption.

Suggested Citation

  • Florian Zacherl & Christoph Wopper & Peter Schwanzer & Hans-Peter Rabl, 2022. "Potential of the Synthetic Fuel Oxymethylene Ether (OME) for the Usage in a Single-Cylinder Non-Road Diesel Engine: Thermodynamics and Emissions," Energies, MDPI, vol. 15(21), pages 1-26, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7932-:d:953178
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/7932/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/7932/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pastor, José V. & García, Antonio & Micó, Carlos & Lewiski, Felipe, 2020. "An optical investigation of Fischer-Tropsch diesel and Oxymethylene dimethyl ether impact on combustion process for CI engines," Applied Energy, Elsevier, vol. 260(C).
    2. Omari, Ahmad & Heuser, Benedikt & Pischinger, Stefan & Rüdinger, Christoph, 2019. "Potential of long-chain oxymethylene ether and oxymethylene ether-diesel blends for ultra-low emission engines," Applied Energy, Elsevier, vol. 239(C), pages 1242-1249.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rina Ren & Tiexiong Su & Fukang Ma & Wei Yang & Xin Zhao & Chunlong Xu, 2022. "Research on the Effect of the Outlet Throttle Diameter Deviation on the Pressure Relief Rate of the Injector Control Valve," Energies, MDPI, vol. 16(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Srivastava, Vivek & Schaub, Joschka & Pischinger, Stefan, 2023. "Model-based closed-loop control strategies for flex-fuel capability," Applied Energy, Elsevier, vol. 350(C).
    2. Betgeri, Vikram & Bhardwaj, Om Parkash & Pischinger, Stefan, 2023. "Investigation of the drop-in capabilities of a renewable 1-Octanol based E-fuel for heavy-duty engine applications," Energy, Elsevier, vol. 282(C).
    3. Lis Corral-Gómez & Octavio Armas & José A. Soriano & José V. Pastor & José M. García-Oliver & Carlos Micó, 2022. "An Optical Engine Used as a Physical Model for Studies of the Combustion Process Applying a Two-Color Pyrometry Technique," Energies, MDPI, vol. 15(13), pages 1-17, June.
    4. Pastor, José V. & García, Antonio & Micó, Carlos & Lewiski, Felipe & Vassallo, Alberto & Pesce, Francesco Concetto, 2021. "Effect of a novel piston geometry on the combustion process of a light-duty compression ignition engine: An optical analysis," Energy, Elsevier, vol. 221(C).
    5. Sandra Richter & Trupti Kathrotia & Marina Braun-Unkhoff & Clemens Naumann & Markus Köhler, 2021. "Influence of Oxymethylene Ethers (OME n ) in Mixtures with a Diesel Surrogate," Energies, MDPI, vol. 14(23), pages 1-13, November.
    6. Wojcieszyk, Michał & Kroyan, Yuri & Kaario, Ossi & Larmi, Martti, 2023. "Prediction of heavy-duty engine performance for renewable fuels based on fuel property characteristics," Energy, Elsevier, vol. 285(C).
    7. García, Antonio & Monsalve-Serrano, Javier & Lago Sari, Rafael & Gaillard, Patrick, 2020. "Assessment of a complete truck operating under dual-mode dual-fuel combustion in real life applications: Performance and emissions analysis," Applied Energy, Elsevier, vol. 279(C).
    8. Márton Virt & Máté Zöldy, 2024. "Enhancing the Viability of a Promising E-Fuel: Oxymethylene Ether–Decanol Mixtures," Energies, MDPI, vol. 17(6), pages 1-17, March.
    9. Pastor, Jose V. & García-Oliver, Jose M. & Micó, Carlos & Tejada, Francisco J., 2023. "Characterization of the oxymethylene ether fuels flame structure for ECN Spray A and Spray D nozzles," Applied Energy, Elsevier, vol. 332(C).
    10. Pastor, José V. & García, Antonio & Micó, Carlos & Lewiski, Felipe, 2020. "An optical investigation of Fischer-Tropsch diesel and Oxymethylene dimethyl ether impact on combustion process for CI engines," Applied Energy, Elsevier, vol. 260(C).
    11. da Costa, Roberto Berlini Rodrigues & Coronado, Christian J.R. & Hernández, Juan J. & Malaquias, Augusto Cesar Teixeira & Flores, Luiz Fernando Valadão & de Carvalho, João A., 2021. "Experimental assessment of power generation using a compression ignition engine fueled by farnesane – A renewable diesel from sugarcane," Energy, Elsevier, vol. 233(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7932-:d:953178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.