IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v376y2024ipbs030626192401688x.html
   My bibliography  Save this article

Evaluation of the ducted fuel injection concept for medium duty engines and multi-hole nozzles: An optical analysis

Author

Listed:
  • Pastor, José V.
  • Micó, Carlos
  • Lewiski, Felipe
  • Bin-Khalid, Usama

Abstract

Ducted Fuel Injection (DFI) is a strategy still in development, which has proved to be effective in reducing soot emissions in compression ignition engines. It works by driving the spray, formed by a high-pressure fuel injection, through a small duct co-axial to the spray itself, which is expected to affect the mixture formation and combustion process, in turn leading to noticeable reduction in soot formation. This strategy has been mostly deployed in spray vessels or in some cases in heavy duty engines consisting of mostly 2-to-4-hole nozzle injectors. For this reason, the work here is aimed to study the potential of DFI in a medium-duty single-cylinder optical engine fueled with conventional diesel having an 8-hole nozzle injector. Two different optical techniques including OH* chemiluminescence and 2-color pyrometry have been utilized to perform the analysis regarding combustion evolution and soot formation. A parametric analysis regarding different geometrical parameters including stand-off distance, diameter and length of duct has been carried out regarding the DFI performance. Results indicate that DFI does decrease the soot emissions in the context of this study and the duct geometrical parameters influence combustion evolution and soot formation ultimately affecting the device's performance. However, the scale of soot reduction is not as high as reported in previous studies, which is limited by specific boundary conditions including combustion chamber design, piston geometry utilized in this study.

Suggested Citation

  • Pastor, José V. & Micó, Carlos & Lewiski, Felipe & Bin-Khalid, Usama, 2024. "Evaluation of the ducted fuel injection concept for medium duty engines and multi-hole nozzles: An optical analysis," Applied Energy, Elsevier, vol. 376(PB).
  • Handle: RePEc:eee:appene:v:376:y:2024:i:pb:s030626192401688x
    DOI: 10.1016/j.apenergy.2024.124305
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192401688X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124305?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pastor, José V. & García, Antonio & Micó, Carlos & Lewiski, Felipe, 2020. "An optical investigation of Fischer-Tropsch diesel and Oxymethylene dimethyl ether impact on combustion process for CI engines," Applied Energy, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lis Corral-Gómez & Octavio Armas & José A. Soriano & José V. Pastor & José M. García-Oliver & Carlos Micó, 2022. "An Optical Engine Used as a Physical Model for Studies of the Combustion Process Applying a Two-Color Pyrometry Technique," Energies, MDPI, vol. 15(13), pages 1-17, June.
    2. Lyu, Zhao & Tang, Xincheng & Zhang, Hucheng & Qiao, Xinqi & Jin, Zhiwei & Shi, Lei, 2024. "Experimental characterization on injection and spray of coal-derived liquid fuel," Energy, Elsevier, vol. 310(C).
    3. Florian Zacherl & Christoph Wopper & Peter Schwanzer & Hans-Peter Rabl, 2022. "Potential of the Synthetic Fuel Oxymethylene Ether (OME) for the Usage in a Single-Cylinder Non-Road Diesel Engine: Thermodynamics and Emissions," Energies, MDPI, vol. 15(21), pages 1-26, October.
    4. Pastor, Jose V. & García-Oliver, Jose M. & Micó, Carlos & Tejada, Francisco J., 2023. "Characterization of the oxymethylene ether fuels flame structure for ECN Spray A and Spray D nozzles," Applied Energy, Elsevier, vol. 332(C).
    5. da Costa, Roberto Berlini Rodrigues & Coronado, Christian J.R. & Hernández, Juan J. & Malaquias, Augusto Cesar Teixeira & Flores, Luiz Fernando Valadão & de Carvalho, João A., 2021. "Experimental assessment of power generation using a compression ignition engine fueled by farnesane – A renewable diesel from sugarcane," Energy, Elsevier, vol. 233(C).
    6. Pastor, José V. & García, Antonio & Micó, Carlos & Lewiski, Felipe & Vassallo, Alberto & Pesce, Francesco Concetto, 2021. "Effect of a novel piston geometry on the combustion process of a light-duty compression ignition engine: An optical analysis," Energy, Elsevier, vol. 221(C).
    7. Srivastava, Vivek & Schaub, Joschka & Pischinger, Stefan, 2023. "Model-based closed-loop control strategies for flex-fuel capability," Applied Energy, Elsevier, vol. 350(C).
    8. García, Antonio & Monsalve-Serrano, Javier & Lago Sari, Rafael & Gaillard, Patrick, 2020. "Assessment of a complete truck operating under dual-mode dual-fuel combustion in real life applications: Performance and emissions analysis," Applied Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:376:y:2024:i:pb:s030626192401688x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.