IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7787-d948905.html
   My bibliography  Save this article

Effect of Temperature on Energy Consumption and Polarization in Reverse Osmosis Desalination Using a Spray-Cooled Photovoltaic System

Author

Listed:
  • María Magdalena Armendáriz-Ontiveros

    (Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Ciudad Obregón 85000, Sonora, Mexico)

  • Germán Eduardo Dévora-Isiordia

    (Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Ciudad Obregón 85000, Sonora, Mexico)

  • Jorge Rodríguez-López

    (Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Ciudad Obregón 85000, Sonora, Mexico)

  • Reyna Guadalupe Sánchez-Duarte

    (Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Ciudad Obregón 85000, Sonora, Mexico)

  • Jesús Álvarez-Sánchez

    (Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Ciudad Obregón 85000, Sonora, Mexico)

  • Yedidia Villegas-Peralta

    (Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Ciudad Obregón 85000, Sonora, Mexico)

  • María del Rosario Martínez-Macias

    (Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Ciudad Obregón 85000, Sonora, Mexico)

Abstract

Reverse osmosis (RO) desalination is considered a viable alternative to reduce water scarcity; however, its energy consumption is high. Photovoltaic (PV) energy in desalination processes has gained popularity in recent years. The temperature is identified as a variable that directly affects the behavior of different parameters of the RO process and energy production in PV panels. The objective of this study was to evaluate the effect of temperature on energy consumption and polarization factor in desalination processes at 20, 23, 26 and 30 °C. Tests were conducted on a RO desalination plant driven by a fixed 24-module PV system that received spray cooling in the winter, spring and summer seasons. The specific energy consumption was lower with increasing process feed temperature, being 4.4, 4.3, 3.9 and 3.5 kWh m −3 for temperatures of 20, 23, 26 and 30 °C, respectively. The water temperature affected the polarization factor, being lower as the temperature increased. The values obtained were within the limits established as optimal to prevent the formation of scaling on the membrane surface. The spray cooling system was able to decrease the temperature of the solar cells by about 6.2, 13.3 and 11.5 °C for the winter, spring and summer seasons, respectively. The increase in energy production efficiency was 7.96–14.25%, demonstrating that solar cell temperature control is a viable alternative to improve power generation in solar panel systems.

Suggested Citation

  • María Magdalena Armendáriz-Ontiveros & Germán Eduardo Dévora-Isiordia & Jorge Rodríguez-López & Reyna Guadalupe Sánchez-Duarte & Jesús Álvarez-Sánchez & Yedidia Villegas-Peralta & María del Rosario Ma, 2022. "Effect of Temperature on Energy Consumption and Polarization in Reverse Osmosis Desalination Using a Spray-Cooled Photovoltaic System," Energies, MDPI, vol. 15(20), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7787-:d:948905
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7787/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7787/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vishwas Powar & Rajendra Singh, 2021. "Stand-Alone Direct Current Power Network Based on Photovoltaics and Lithium-Ion Batteries for Reverse Osmosis Desalination Plant," Energies, MDPI, vol. 14(10), pages 1-23, May.
    2. Ghaffour, Noreddine & Lattemann, Sabine & Missimer, Thomas & Ng, Kim Choon & Sinha, Shahnawaz & Amy, Gary, 2014. "Renewable energy-driven innovative energy-efficient desalination technologies," Applied Energy, Elsevier, vol. 136(C), pages 1155-1165.
    3. Schiro, Fabio & Benato, Alberto & Stoppato, Anna & Destro, Nicola, 2017. "Improving photovoltaics efficiency by water cooling: Modelling and experimental approach," Energy, Elsevier, vol. 137(C), pages 798-810.
    4. Michael Castro & Myron Alcanzare & Eugene Esparcia & Joey Ocon, 2020. "A Comparative Techno-Economic Analysis of Different Desalination Technologies in Off-Grid Islands," Energies, MDPI, vol. 13(9), pages 1-25, May.
    5. Alghoul, M.A. & Poovanaesvaran, P. & Mohammed, M.H. & Fadhil, A.M. & Muftah, A.F. & Alkilani, M.M. & Sopian, K., 2016. "Design and experimental performance of brackish water reverse osmosis desalination unit powered by 2 kW photovoltaic system," Renewable Energy, Elsevier, vol. 93(C), pages 101-114.
    6. Roggenburg, Michael & Warsinger, David M. & Bocanegra Evans, Humberto & Castillo, Luciano, 2021. "Combatting water scarcity and economic distress along the US-Mexico border using renewable powered desalination," Applied Energy, Elsevier, vol. 291(C).
    7. Bevilacqua, Piero & Bruno, Roberto & Arcuri, Natale, 2020. "Comparing the performances of different cooling strategies to increase photovoltaic electric performance in different meteorological conditions," Energy, Elsevier, vol. 195(C).
    8. Bahaidarah, H. & Subhan, Abdul & Gandhidasan, P. & Rehman, S., 2013. "Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions," Energy, Elsevier, vol. 59(C), pages 445-453.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piero Bevilacqua & Stefania Perrella & Daniela Cirone & Roberto Bruno & Natale Arcuri, 2021. "Efficiency Improvement of Photovoltaic Modules via Back Surface Cooling," Energies, MDPI, vol. 14(4), pages 1-18, February.
    2. Žižak, Tej & Domjan, Suzana & Medved, Sašo & Arkar, Ciril, 2022. "Efficiency and sustainability assessment of evaporative cooling of photovoltaics," Energy, Elsevier, vol. 254(PA).
    3. Ruoping, Yan & Xiaohui, Yu & Fuwei, Lu & Huajun, Wang, 2020. "Study of operation performance for a solar photovoltaic system assisted cooling by ground heat exchangers in arid climate, China," Renewable Energy, Elsevier, vol. 155(C), pages 102-110.
    4. Hussein M. Maghrabie & Abdul Ghani Olabi & Ahmed Rezk & Ali Radwan & Abdul Hai Alami & Mohammad Ali Abdelkareem, 2023. "Energy Storage for Water Desalination Systems Based on Renewable Energy Resources," Energies, MDPI, vol. 16(7), pages 1-34, March.
    5. Kasaeian, Alibakhsh & Rajaee, Fatemeh & Yan, Wei-Mon, 2019. "Osmotic desalination by solar energy: A critical review," Renewable Energy, Elsevier, vol. 134(C), pages 1473-1490.
    6. Carta, José A. & Cabrera, Pedro, 2021. "Optimal sizing of stand-alone wind-powered seawater reverse osmosis plants without use of massive energy storage," Applied Energy, Elsevier, vol. 304(C).
    7. Rajvikram Madurai Elavarasan & Karthikeyan Velmurugan & Umashankar Subramaniam & A Rakesh Kumar & Dhafer Almakhles, 2020. "Experimental Investigations Conducted for the Characteristic Study of OM29 Phase Change Material and Its Incorporation in Photovoltaic Panel," Energies, MDPI, vol. 13(4), pages 1-18, February.
    8. Calise, Francesco & Cappiello, Francesco Liberato & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Economic assessment of renewable energy systems integrating photovoltaic panels, seawater desalination and water storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Liu, Yanfeng & Chen, Yingya & Wang, Dengjia & Liu, Jingrui & Luo, Xi & Wang, Yingying & Liu, Huaican & Liu, Jiaping, 2021. "Experimental and numerical analyses of parameter optimization of photovoltaic cooling system," Energy, Elsevier, vol. 215(PA).
    10. Tashtoush, Bourhan & Alyahya, Wa'ed & Al Ghadi, Malak & Al-Omari, Jamal & Morosuk, Tatiana, 2023. "Renewable energy integration in water desalination: State-of-the-art review and comparative analysis," Applied Energy, Elsevier, vol. 352(C).
    11. Kim, Jungbin & Park, Kiho & Yang, Dae Ryook & Hong, Seungkwan, 2019. "A comprehensive review of energy consumption of seawater reverse osmosis desalination plants," Applied Energy, Elsevier, vol. 254(C).
    12. Ahmed E. Abu El-Maaty & Mohamed M. Awad & Gamal I. Sultan & Ahmed M. Hamed, 2023. "Innovative Approaches to Solar Desalination: A Comprehensive Review of Recent Research," Energies, MDPI, vol. 16(9), pages 1-31, May.
    13. Chen, Qian & Alrowais, Raid & Burhan, Muhammad & Ybyraiymkul, Doskhan & Shahzad, Muhammad Wakil & Li, Yong & Ng, Kim Choon, 2020. "A self-sustainable solar desalination system using direct spray technology," Energy, Elsevier, vol. 205(C).
    14. Zhang, Wei & Chen, Miao & Zhang, Shaofeng & Wang, Yiping, 2020. "Designation of a solar falling-film photochemical hybrid system for the decolorization of azo dyes," Energy, Elsevier, vol. 197(C).
    15. Bevilacqua, Piero & Bruno, Roberto & Rollo, Antonino & Ferraro, Vittorio, 2022. "A novel thermal model for PV panels with back surface spray cooling," Energy, Elsevier, vol. 255(C).
    16. Ma, Chao & Liu, Zhao, 2022. "Water-surface photovoltaics: Performance, utilization, and interactions with water eco-environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    17. Lu, Yashun & Li, Guiqiang, 2023. "Potential application of electrical performance enhancement methods in PV/T module," Energy, Elsevier, vol. 281(C).
    18. Oladotun Victor Ogunyemi & Ibrahim Adeiza Ahmed & Omotosho Abdulqudus Ajibola, 2024. "Innovative Systems for Renewable Energy Integration: Harnessing AI, Blockchain, and Hybrid Technologies – A Review," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(10), pages 603-634, October.
    19. Alsaman, Ahmed S. & Askalany, Ahmed A. & Harby, K. & Ahmed, Mahmoud S., 2016. "A state of the art of hybrid adsorption desalination–cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 692-703.
    20. Al-Amri, Fahad & Saeed, Farooq & Mujeebu, Muhammad Abdul, 2022. "Novel dual-function racking structure for passive cooling of solar PV panels –thermal performance analysis," Renewable Energy, Elsevier, vol. 198(C), pages 100-113.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7787-:d:948905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.