IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v93y2016icp101-114.html
   My bibliography  Save this article

Design and experimental performance of brackish water reverse osmosis desalination unit powered by 2 kW photovoltaic system

Author

Listed:
  • Alghoul, M.A.
  • Poovanaesvaran, P.
  • Mohammed, M.H.
  • Fadhil, A.M.
  • Muftah, A.F.
  • Alkilani, M.M.
  • Sopian, K.

Abstract

Small-scale brackish water reverse osmosis (BWRO) desalination units are not a major commercial success compared to its large-scale counterpart. Integrating renewable power systems with small-scale units would theoretically aid in their deployment and subsequent commercial success. In fact, RO units are constructed using a modular approach; this would allow them to adapt to a renewable power supply. Small-scale PV-RO would be a promising form of desalination system in remote areas, where BW is more common. The aim of this study is to quantify the effect of climatic-design-operation conditions on the performance and durability of a PV-BWRO desalination system. A small-scale unit is designed, constructed, and tested for 6 months. The design was limited to a 2 kWp PV power system, five different membranes, a feed TDS of 2000 mg/l, and a permeate TDS of less than 50 mg/l. Data pertaining to solar radiation and temperature were subsequently analyzed to determine their respective influences on current and future operations of the unit. The results showed that the optimum RO load, membrane type, and design configuration were 600 W, (4″x40″ TW30-4040), and a two-stage configuration, respectively. The PV system was able to supply the load without any significant disturbances; while the RO unit showed stable levels of permeate flow and salinity. Operating the PV-BWRO system for 10 h during the day would produce 5.1 m3 of fresh water at a specific energy of 1.1 kWh/m3. It was confirmed that there are many hours of high temperatures during the operation of the PV module (exceeding 45 °C) and battery room conditions (exceeding 35 °C), both of which could negatively affect the power output and battery autonomy. This negative effect is compounded annually; therefore, optimizing thermal regulation of PV modules and battery bank room conditions is essential in maintaining excellent operating temperatures.

Suggested Citation

  • Alghoul, M.A. & Poovanaesvaran, P. & Mohammed, M.H. & Fadhil, A.M. & Muftah, A.F. & Alkilani, M.M. & Sopian, K., 2016. "Design and experimental performance of brackish water reverse osmosis desalination unit powered by 2 kW photovoltaic system," Renewable Energy, Elsevier, vol. 93(C), pages 101-114.
  • Handle: RePEc:eee:renene:v:93:y:2016:i:c:p:101-114
    DOI: 10.1016/j.renene.2016.02.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116301161
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.02.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al Suleimani, Zaher & Nair, V. Rajendran, 2000. "Desalination by solar-powered reverse osmosis in a remote area of the Sultanate of Oman," Applied Energy, Elsevier, vol. 65(1-4), pages 367-380, April.
    2. Alghoul, M.A. & Poovanaesvaran, P. & Sopian, K. & Sulaiman, M.Y., 2009. "Review of brackish water reverse osmosis (BWRO) system designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2661-2667, December.
    3. Herold, D. & Horstmann, V. & Neskakis, A. & Plettner-Marliani, J. & Piernavieja, G. & Calero, R., 1998. "Small scale photovoltaic desalination for rural water supply - demonstration plant in Gran Canaria," Renewable Energy, Elsevier, vol. 14(1), pages 293-298.
    4. Yadav, Amit Kumar & Chandel, S.S., 2013. "Tilt angle optimization to maximize incident solar radiation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 503-513.
    5. Alajlan, S.A. & Smiai, M.S., 1996. "Performance and development of PV - plant for water pumping and desalination for remote area in Saudi Arabia," Renewable Energy, Elsevier, vol. 8(1), pages 441-446.
    6. Gocht, W. & Sommerfeld, A. & Rautenbach, R. & Melin, Th. & Eilers, L. & Neskakis, A. & Herold, D. & Horstmann, V. & Kabariti, M. & Muhaidat, A., 1998. "Decentralized desalination of brackish water by a directly coupled reverse-osmosis-photovoltaic-system - a pilot plant study in Jordan," Renewable Energy, Elsevier, vol. 14(1), pages 287-292.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis Acevedo & Javier Uche & Alejandro Del Almo & Fernando Círez & Sergio Usón & Amaya Martínez & Isabel Guedea, 2016. "Dynamic Simulation of a Trigeneration Scheme for Domestic Purposes Based on Hybrid Techniques," Energies, MDPI, vol. 9(12), pages 1-25, November.
    2. Esmaeil Ahmadi & Benjamin McLellan & Behnam Mohammadi-Ivatloo & Tetsuo Tezuka, 2020. "The Role of Renewable Energy Resources in Sustainability of Water Desalination as a Potential Fresh-Water Source: An Updated Review," Sustainability, MDPI, vol. 12(13), pages 1-31, June.
    3. Freire-Gormaly, M. & Bilton, A.M., 2019. "Design of photovoltaic powered reverse osmosis desalination systems considering membrane fouling caused by intermittent operation," Renewable Energy, Elsevier, vol. 135(C), pages 108-121.
    4. María Magdalena Armendáriz-Ontiveros & Germán Eduardo Dévora-Isiordia & Jorge Rodríguez-López & Reyna Guadalupe Sánchez-Duarte & Jesús Álvarez-Sánchez & Yedidia Villegas-Peralta & María del Rosario Ma, 2022. "Effect of Temperature on Energy Consumption and Polarization in Reverse Osmosis Desalination Using a Spray-Cooled Photovoltaic System," Energies, MDPI, vol. 15(20), pages 1-15, October.
    5. Mahmoudi, Ali & Bostani, Mohammad & Rashidi, Saman & Valipour, Mohammad Sadegh, 2023. "Challenges and opportunities of desalination with renewable energy resources in Middle East countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    6. Esmaeil Ahmadi & Benjamin McLellan & Seiichi Ogata & Behnam Mohammadi-Ivatloo & Tetsuo Tezuka, 2020. "An Integrated Planning Framework for Sustainable Water and Energy Supply," Sustainability, MDPI, vol. 12(10), pages 1-37, May.
    7. Huang, Xiaojian & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Chen, Ying & María Ponce-Ortega, José & El-Halwagi, Mahmoud M., 2018. "Synthesis and dual-objective optimization of industrial combined heat and power plants compromising the water–energy nexus," Applied Energy, Elsevier, vol. 224(C), pages 448-468.
    8. Kaczmarczyk, Michał & Mukti, Mentari & Ghaffour, Noreddine & Soukane, Sofiane & Bundschuh, Jochen & Tomaszewska, Barbara, 2024. "Renewable energy-driven membrane distillation in the context of life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    9. Li, Sheying & Cai, Yang-Hui & Schäfer, Andrea I. & Richards, Bryce S., 2019. "Renewable energy powered membrane technology: A review of the reliability of photovoltaic-powered membrane system components for brackish water desalination," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Kasaeian, Alibakhsh & Rajaee, Fatemeh & Yan, Wei-Mon, 2019. "Osmotic desalination by solar energy: A critical review," Renewable Energy, Elsevier, vol. 134(C), pages 1473-1490.
    11. Shalaby, S.M., 2017. "Reverse osmosis desalination powered by photovoltaic and solar Rankine cycle power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 789-797.
    12. Usman, Haamid Sani & Touati, Khaled & Rahaman, Md. Saifur, 2021. "An economic evaluation of renewable energy-powered membrane distillation for desalination of brackish water," Renewable Energy, Elsevier, vol. 169(C), pages 1294-1304.
    13. Rosales-Asensio, Enrique & Borge-Diez, David & Pérez-Hoyos, Ana & Colmenar-Santos, Antonio, 2019. "Reduction of water cost for an existing wind-energy-based desalination scheme: A preliminary configuration," Energy, Elsevier, vol. 167(C), pages 548-560.
    14. Ahmadi, Esmaeil & McLellan, Benjamin & Tezuka, Tetsuo, 2020. "The economic synergies of modelling the renewable energy-water nexus towards sustainability," Renewable Energy, Elsevier, vol. 162(C), pages 1347-1366.
    15. Calise, Francesco & Cappiello, Francesco Liberato & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Economic assessment of renewable energy systems integrating photovoltaic panels, seawater desalination and water storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    16. Khan, Meer A.M. & Rehman, S. & Al-Sulaiman, Fahad A., 2018. "A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 456-477.
    17. Tashtoush, Bourhan & Alyahya, Wa'ed & Al Ghadi, Malak & Al-Omari, Jamal & Morosuk, Tatiana, 2023. "Renewable energy integration in water desalination: State-of-the-art review and comparative analysis," Applied Energy, Elsevier, vol. 352(C).
    18. Li, Sheying & Voigt, Achim & Schäfer, Andrea I. & Richards, Bryce S., 2020. "Renewable energy powered membrane technology: Energy buffering control system for improved resilience to periodic fluctuations of solar irradiance," Renewable Energy, Elsevier, vol. 149(C), pages 877-889.
    19. Liang, Mengjun & Karthick, Ramalingam & Wei, Qiang & Dai, Jinhong & Jiang, Zhuosheng & Chen, Xuncai & Oo, Than Zaw & Aung, Su Htike & Chen, Fuming, 2022. "The progress and prospect of the solar-driven photoelectrochemical desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gude, Veera Gnaneswar, 2015. "Energy storage for desalination processes powered by renewable energy and waste heat sources," Applied Energy, Elsevier, vol. 137(C), pages 877-898.
    2. Ali, Aamer & Tufa, Ramato Ashu & Macedonio, Francesca & Curcio, Efrem & Drioli, Enrico, 2018. "Membrane technology in renewable-energy-driven desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1-21.
    3. Gude, Veera Gnaneswar & Nirmalakhandan, Nagamany & Deng, Shuguang, 2010. "Renewable and sustainable approaches for desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2641-2654, December.
    4. Sharon, H. & Reddy, K.S., 2015. "A review of solar energy driven desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1080-1118.
    5. Li, Sheying & Voigt, Achim & Schäfer, Andrea I. & Richards, Bryce S., 2020. "Renewable energy powered membrane technology: Energy buffering control system for improved resilience to periodic fluctuations of solar irradiance," Renewable Energy, Elsevier, vol. 149(C), pages 877-889.
    6. Ali, Muhammad Tauha & Fath, Hassan E.S. & Armstrong, Peter R., 2011. "A comprehensive techno-economical review of indirect solar desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4187-4199.
    7. Khan, Meer A.M. & Rehman, S. & Al-Sulaiman, Fahad A., 2018. "A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 456-477.
    8. Qiblawey, Hazim & Banat, Fawzi & Al-Nasser, Qais, 2011. "Performance of reverse osmosis pilot plant powered by Photovoltaic in Jordan," Renewable Energy, Elsevier, vol. 36(12), pages 3452-3460.
    9. Muhsen, Dhiaa Halboot & Khatib, Tamer & Nagi, Farrukh, 2017. "A review of photovoltaic water pumping system designing methods, control strategies and field performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 70-86.
    10. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    11. AL-Yahyai, Sultan & Charabi, Yassine & Gastli, Adel & Al-Alawi, Saleh, 2010. "Assessment of wind energy potential locations in Oman using data from existing weather stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1428-1436, June.
    12. Schuster, Christian Stefano, 2020. "The quest for the optimum angular-tilt of terrestrial solar panels or their angle-resolved annual insolation," Renewable Energy, Elsevier, vol. 152(C), pages 1186-1191.
    13. Deb, Dipankar & Brahmbhatt, Nisarg L., 2018. "Review of yield increase of solar panels through soiling prevention, and a proposed water-free automated cleaning solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3306-3313.
    14. Khalil, Samy A. & Shaffie, A.M., 2016. "Evaluation of transposition models of solar irradiance over Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 105-119.
    15. Mohammadi, Kasra & Khorasanizadeh, Hossein, 2015. "A review of solar radiation on vertically mounted solar surfaces and proper azimuth angles in six Iranian major cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 504-518.
    16. Zhang, Xingxing & Shen, Jingchun & Lu, Yan & He, Wei & Xu, Peng & Zhao, Xudong & Qiu, Zhongzhu & Zhu, Zishang & Zhou, Jinzhi & Dong, Xiaoqiang, 2015. "Active Solar Thermal Facades (ASTFs): From concept, application to research questions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 32-63.
    17. Zech, Matthias & von Bremen, Lueder, 2024. "End-to-end learning of representative PV capacity factors from aggregated PV feed-ins," Applied Energy, Elsevier, vol. 361(C).
    18. Li, Chennan & Goswami, Yogi & Stefanakos, Elias, 2013. "Solar assisted sea water desalination: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 136-163.
    19. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    20. Charcosset, C. & Falconet, C. & Combe, M., 2009. "Hydrostatic pressure plants for desalination via reverse osmosis," Renewable Energy, Elsevier, vol. 34(12), pages 2878-2882.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:93:y:2016:i:c:p:101-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.