IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223026142.html
   My bibliography  Save this article

Ammonia blend ratio impact on combustion characteristics and NOx emissions during co-firing with sludge and coal in a utility boiler

Author

Listed:
  • Wei, Daining
  • Zhang, Zhichao
  • Wu, Lining
  • Wang, Tao
  • Sun, Baomin

Abstract

This study investigates the effects of the ammonia blend ratio and the number of nozzle layers on boiler combustion characteristics and NOx emissions by the computational fluid dynamics simulation method. The conclusions indicate that, as ammonia is injected from a single-layer of secondary air nozzles, with the ammonia blend ratio increases, the combustion temperature decreases, when the blend ratio is 60%, the combustion temperature decreases by about 300 K. When ammonia is injected into the furnace from multiple-layers of nozzles, and under the premise of the same ammonia blend ratio, the overall impact on the furnace temperature is smaller than that of ammonia entering from a single-layer of nozzles. When the blend ratio of the ammonia is 40%, the NOx emission of ammonia entering the furnace from two layers of secondary air nozzles is about 22.47% higher than when it is injected into the furnace from a single-layer of nozzles. After raising the ammonia mixing ratio, the NOx at the furnace outlet shows an inverted-parabola change, which first decreasing and then increasing.

Suggested Citation

  • Wei, Daining & Zhang, Zhichao & Wu, Lining & Wang, Tao & Sun, Baomin, 2023. "Ammonia blend ratio impact on combustion characteristics and NOx emissions during co-firing with sludge and coal in a utility boiler," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223026142
    DOI: 10.1016/j.energy.2023.129220
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223026142
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129220?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Xiaofeng & Fan, Weidong & Liu, Yacheng & Bian, Bao, 2019. "Numerical simulation research on the unique thermal deviation in a 1000 MW tower type boiler," Energy, Elsevier, vol. 173(C), pages 1006-1020.
    2. Hao Rong & Teng Wang & Min Zhou & Hao Wang & Haobo Hou & Yongjie Xue, 2017. "Combustion Characteristics and Slagging during Co-Combustion of Rice Husk and Sewage Sludge Blends," Energies, MDPI, vol. 10(4), pages 1-13, March.
    3. Chen, Qixin & Kang, Chongqing & Xia, Qing & Guan, Dabo, 2011. "Preliminary exploration on low-carbon technology roadmap of China’s power sector," Energy, Elsevier, vol. 36(3), pages 1500-1512.
    4. Liu, Yacheng & Fan, Weidong & Li, Yu, 2016. "Numerical investigation of air-staged combustion emphasizing char gasification and gas temperature deviation in a large-scale, tangentially fired pulverized-coal boiler," Applied Energy, Elsevier, vol. 177(C), pages 323-334.
    5. Tan, Peng & Ma, Lun & Xia, Ji & Fang, Qingyan & Zhang, Cheng & Chen, Gang, 2017. "Co-firing sludge in a pulverized coal-fired utility boiler: Combustion characteristics and economic impacts," Energy, Elsevier, vol. 119(C), pages 392-399.
    6. Li, Zixiang & Miao, Zhengqing, 2019. "Primary air ratio affects coal utilization mode and NOx emission in lignite pulverized boiler," Energy, Elsevier, vol. 187(C).
    7. Zhang, M.M. & Wang, Qunwei & Zhou, Dequn & Ding, H., 2019. "Evaluating uncertain investment decisions in low-carbon transition toward renewable energy," Applied Energy, Elsevier, vol. 240(C), pages 1049-1060.
    8. Chai, Wai Siong & Bao, Yulei & Jin, Pengfei & Tang, Guang & Zhou, Lei, 2021. "A review on ammonia, ammonia-hydrogen and ammonia-methane fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    9. Jie, Dingfei & Xu, Xiangyang & Guo, Fei, 2021. "The future of coal supply in China based on non-fossil energy development and carbon price strategies," Energy, Elsevier, vol. 220(C).
    10. Tamura, Masato & Gotou, Takahiro & Ishii, Hiroki & Riechelmann, Dirk, 2020. "Experimental investigation of ammonia combustion in a bench scale 1.2 MW-thermal pulverised coal firing furnace," Applied Energy, Elsevier, vol. 277(C).
    11. Li, Zixiang & Qiao, Xinqi & Miao, Zhengqing, 2021. "A novel burner arrangement scheme with annularly combined multiple airflows for wall-tangentially fired pulverized coal boiler," Energy, Elsevier, vol. 222(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zixiang & Miao, Zhengqing & Qiao, Xinqi, 2023. "Effects of structural parameters of a novel burner scheme with annularly combined multiple airflows on performance of a 660 MW tangentially fired boiler," Energy, Elsevier, vol. 280(C).
    2. Wen, Du & Aziz, Muhammad, 2022. "Techno-economic analyses of power-to-ammonia-to-power and biomass-to-ammonia-to-power pathways for carbon neutrality scenario," Applied Energy, Elsevier, vol. 319(C).
    3. Li, Zixiang & Miao, Zhengqing & Han, Baoju & Qiao, Xinqi, 2022. "Effects of the number of wall mounted burners on performance of a 660 MW tangentially fired lignite boiler with annularly combined multiple airflows," Energy, Elsevier, vol. 255(C).
    4. Darbandi, Masoud & Fatin, Ali & Bordbar, Hadi, 2020. "Numerical study on NOx reduction in a large-scale heavy fuel oil-fired boiler using suitable burner adjustments," Energy, Elsevier, vol. 199(C).
    5. Li, Zixiang & Qiao, Xinqi & Miao, Zhengqing, 2021. "A novel burner arrangement scheme with annularly combined multiple airflows for wall-tangentially fired pulverized coal boiler," Energy, Elsevier, vol. 222(C).
    6. Wendi Chen & Fei Wang & Altaf Hussain Kanhar, 2017. "Sludge Acts as a Catalyst for Coal during the Co-Combustion Process Investigated by Thermogravimetric Analysis," Energies, MDPI, vol. 10(12), pages 1-11, December.
    7. Yuan, Zhenhua & Chen, Zhichao & Zhang, Bo & Gao, Xuelin & Li, Jiawei & Qiao, Yanyu & Li, Zhengqi, 2023. "Study on the slagging trends of the pre-combustion chamber in industrial pulverized coal boiler under different excess air coefficients by CFD numerical simulation," Energy, Elsevier, vol. 264(C).
    8. Zeng, Guang & Xu, Mingchen & Tu, Yaojie & Li, Zhenwei & Cai, Yongtie & Zheng, Zhimin & Tay, Kunlin & Yang, Wenming, 2020. "Influences of initial coal concentration on ignition behaviors of low-NOx bias combustion technology," Applied Energy, Elsevier, vol. 278(C).
    9. Zheng Kong & Jianquan Liu & Changxin Zhou, 2022. "Simulation Research on Thermal Deviation in 700 °C Ultra-Supercritical Boiler," Energies, MDPI, vol. 15(20), pages 1-16, October.
    10. Wang, Mingtao & Zhang, Juan & Liu, Huanwei, 2022. "Thermodynamic analysis and optimization of two low-grade energy driven transcritical CO2 combined cooling, heating and power systems," Energy, Elsevier, vol. 249(C).
    11. Janković, Bojan & Dodevski, Vladimir, 2018. "The combustion performances and thermo-oxidative degradation kinetics of plane tree seeds (PTS) (Platanus orientalis L.)," Energy, Elsevier, vol. 154(C), pages 308-318.
    12. Zhanjie Feng & Zhenqi Hu & Xi Zhang & Yuhang Zhang & Ruihao Cui & Li Lu, 2023. "Integrated Mining and Reclamation Practices Enhance Sustainable Land Use: A Case Study in Huainan Coalfield, China," Land, MDPI, vol. 12(11), pages 1-15, October.
    13. Jungmin An & Dong-Kwan Kim & Jinyeong Lee & Sung-Kwan Joo, 2021. "Least Squares Monte Carlo Simulation-Based Decision-Making Method for Photovoltaic Investment in Korea," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    14. Ding, Song & Tao, Zui & Zhang, Huahan & Li, Yao, 2022. "Forecasting nuclear energy consumption in China and America: An optimized structure-adaptative grey model," Energy, Elsevier, vol. 239(PA).
    15. Peng, Benhong & Zhao, Yinyin & Elahi, Ehsan & Wan, Anxia, 2023. "Can third-party market cooperation solve the dilemma of emissions reduction? A case study of energy investment project conflict analysis in the context of carbon neutrality," Energy, Elsevier, vol. 264(C).
    16. Sun, Bo & Fan, Boyang & Zhang, Yifan & Xie, Jingdong, 2023. "Investment decisions and strategies of China's energy storage technology under policy uncertainty: A real options approach," Energy, Elsevier, vol. 278(PA).
    17. Huang, Beijia & Mauerhofer, Volker, 2016. "Low carbon technology assessment and planning—Case analysis of building sector in Chongming, Shanghai," Renewable Energy, Elsevier, vol. 86(C), pages 324-331.
    18. Valentine, Scott Victor, 2014. "The socio-political economy of electricity generation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 416-429.
    19. Dahlen, Niklas & Fehrenkötter, Rieke & Schreiter, Maximilian, 2024. "The new bond on the block — Designing a carbon-linked bond for sustainable investment projects," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 316-325.
    20. Zhao, Xiaoli & Cai, Qiong & Zhang, Sufang & Luo, Kaiyan, 2017. "The substitution of wind power for coal-fired power to realize China's CO2 emissions reduction targets in 2020 and 2030," Energy, Elsevier, vol. 120(C), pages 164-178.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223026142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.