IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7569-d941606.html
   My bibliography  Save this article

Comparative Study of DC-DC Converters for Solar PV with Microgrid Applications

Author

Listed:
  • Ingilala Jagadeesh

    (School of Electrical Engineering, Vellore Institute of Technology, Vellore 632014, India)

  • Vairavasundaram Indragandhi

    (School of Electrical Engineering, Vellore Institute of Technology, Vellore 632014, India)

Abstract

This review emphasizes the role and performance of versatile DC-DC converters in AC/DC and Hybrid microgrid applications, especially when solar (photo voltaic) PV is the major source. Here, the various converter topologies are compared with regard to voltage gain, component count, voltage stress, and soft switching. This study suggests the suitability of the converter based on the source type. The merits of a coupled inductor and interleaved converters in micro gird applications are elucidated. The efficiency and operating frequencies of converts for different operating modes are presented to determine the suitable converters for inductive and resistive loads. The drawbacks of converters are discussed. Finally, the mode of operation of different converts with different grid power sources and its stability and reliability issues are highlighted. In addition, the significance of the converter’s size and cost-effectiveness when choosing various PV source applications are discussed.

Suggested Citation

  • Ingilala Jagadeesh & Vairavasundaram Indragandhi, 2022. "Comparative Study of DC-DC Converters for Solar PV with Microgrid Applications," Energies, MDPI, vol. 15(20), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7569-:d:941606
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7569/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7569/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Javed Ahmad & Mohammad Zaid & Adil Sarwar & Chang-Hua Lin & Mohammed Asim & Raj Kumar Yadav & Mohd Tariq & Kuntal Satpathi & Basem Alamri, 2021. "A New High-Gain DC-DC Converter with Continuous Input Current for DC Microgrid Applications," Energies, MDPI, vol. 14(9), pages 1-14, May.
    2. Tanzim Meraj, Sheikh & Zaihar Yahaya, Nor & Hasan, Kamrul & Hossain Lipu, M.S. & Madurai Elavarasan, Rajvikram & Hussain, Aini & Hannan, M.A. & Muttaqi, Kashem M., 2022. "A filter less improved control scheme for active/reactive energy management in fuel cell integrated grid system with harmonic reduction ability," Applied Energy, Elsevier, vol. 312(C).
    3. Karthikeyan, V. & Gupta, Rajesh, 2017. "Light-load efficiency improvement by extending ZVS range in DAB-bidirectional DC-DC converter for energy storage applications," Energy, Elsevier, vol. 130(C), pages 15-21.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seyed Shahriyar Taghavi & Mahdi Rezvanyvardom & Amin Mirzaei & Saman A. Gorji, 2022. "High Step-Up Three-Level Soft Switching DC-DC Converter for Photovoltaic Generation Systems," Energies, MDPI, vol. 16(1), pages 1-22, December.
    2. Mohamed S. Elrefaey & Mohamed E. Ibrahim & Elsayed Tag Eldin & Hossam Youssef Hegazy & Elwy E. El-Kholy & Samia Abdalfatah, 2022. "Multiple-Source Single-Output Buck-Boost DC–DC Converter with Increased Reliability for Photovoltaic (PV) Applications," Energies, MDPI, vol. 16(1), pages 1-26, December.
    3. Robert Baždarić & Jasmin Ćelić & Danjel Vončina, 2023. "Compensation of the Current Imbalance of an Interleaved DC–DC Buck Converter, Sensorless Online Solution Based on Offline Fuzzy Identification and Post-Linearization," Energies, MDPI, vol. 16(12), pages 1-19, June.
    4. Burhan U Din Abdullah & Suman Lata & Shiva Pujan Jaiswal & Vikas Singh Bhadoria & Georgios Fotis & Athanasios Santas & Lambros Ekonomou, 2023. "A Hybrid Artificial Ecosystem Optimizer and Incremental-Conductance Maximum-Power-Point-Tracking-Controlled Grid-Connected Photovoltaic System," Energies, MDPI, vol. 16(14), pages 1-19, July.
    5. Zhuangzhi Dai & Jilong Liu & Kefeng Li & Zhiqin Mai & Guijing Xue, 2023. "Research on a Modeling and Control Strategy for Interleaved Boost Converters with Coupled Inductors," Energies, MDPI, vol. 16(9), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aline V. C. Pereira & Marcelo C. Cavalcanti & Gustavo M. Azevedo & Fabrício Bradaschia & Rafael C. Neto & Márcio Rodrigo Santos de Carvalho, 2021. "A Novel Single-Switch High Step-Up DC–DC Converter with Three-Winding Coupled Inductor," Energies, MDPI, vol. 14(19), pages 1-17, October.
    2. Miranda, Rodolfo Farías & Salgado-Herrera, Nadia Maria & Rodríguez-Hernández, Osvaldo & Rodríguez-Rodríguez, Juan Ramon & Robles, Miguel & Ruiz-Robles, Dante & Venegas-Rebollar, Vicente, 2022. "Distributed generation in low-voltage DC systems by wind energy in the Baja California Peninsula, Mexico," Energy, Elsevier, vol. 242(C).
    3. Zhang, Hao & Tong, Xiangqian & Yin, Jun & Blaabjerg, Frede, 2023. "Neural network-aided 4-DF global efficiency optimal control for the DAB converter based on the comprehensive loss model," Energy, Elsevier, vol. 262(PA).
    4. Jia, Chunchun & Li, Kunang & He, Hongwen & Zhou, Jiaming & Li, Jianwei & Wei, Zhongbao, 2023. "Health-aware energy management strategy for fuel cell hybrid bus considering air-conditioning control based on TD3 algorithm," Energy, Elsevier, vol. 283(C).
    5. Chen, Jinzhou & He, Hongwen & Wang, Ya-Xiong & Quan, Shengwei & Zhang, Zhendong & Wei, Zhongbao & Han, Ruoyan, 2024. "Research on energy management strategy for fuel cell hybrid electric vehicles based on improved dynamic programming and air supply optimization," Energy, Elsevier, vol. 300(C).
    6. Kiran Bathala & Dharavath Kishan & Nagendrappa Harischandrappa, 2022. "Soft Switched Current Fed Dual Active Bridge Isolated Bidirectional Series Resonant DC-DC Converter for Energy Storage Applications," Energies, MDPI, vol. 16(1), pages 1-20, December.
    7. Farhan Mumtaz & Nor Zaihar Yahaya & Sheikh Tanzim Meraj & Narinderjit Singh Sawaran Singh & Md. Siddikur Rahman & Molla Shahadat Hossain Lipu, 2023. "A High Voltage Gain Interleaved DC-DC Converter Integrated Fuel Cell for Power Quality Enhancement of Microgrid," Sustainability, MDPI, vol. 15(9), pages 1-21, April.
    8. Mohammad Zaid & Chang-Hua Lin & Shahrukh Khan & Javed Ahmad & Mohd Tariq & Arshad Mahmood & Adil Sarwar & Basem Alamri & Ahmad Alahmadi, 2021. "A Family of Transformerless Quadratic Boost High Gain DC-DC Converters," Energies, MDPI, vol. 14(14), pages 1-25, July.
    9. Osmani, Khaled & Haddad, Ahmad & Lemenand, Thierry & Castanier, Bruno & Ramadan, Mohamad, 2021. "An investigation on maximum power extraction algorithms from PV systems with corresponding DC-DC converters," Energy, Elsevier, vol. 224(C).
    10. Tianhao Hou & Yunhao Jiang & Zishuo Cai, 2024. "Inverter Multi-Machine Grid Integration Resonance Suppression Strategy by Active Damping," Energies, MDPI, vol. 17(15), pages 1-12, August.
    11. Eduardo Augusto Oliveira Barbosa & Márcio Rodrigo Santos de Carvalho & Leonardo Rodrigues Limongi & Marcelo Cabral Cavalcanti & Eduardo José Barbosa & Gustavo Medeiros de Souza Azevedo, 2021. "High-Gain High-Efficiency DC–DC Converter with Single-Core Parallel Operation Switched Inductors and Rectifier Voltage Multiplier Cell," Energies, MDPI, vol. 14(15), pages 1-18, July.
    12. Amine, Hartani Mohamed & Aissa, Benhammou & Rezk, Hegazy & Messaoud, Hamouda & Othmane, Adbdelkhalek & Saad, Mekhilef & Abdelkareem, Mohammad Ali, 2023. "Enhancing hybrid energy storage systems with advanced low-pass filtration and frequency decoupling for optimal power allocation and reliability of cluster of DC-microgrids," Energy, Elsevier, vol. 282(C).
    13. Turksoy, Arzu & Teke, Ahmet & Alkaya, Alkan, 2020. "A comprehensive overview of the dc-dc converter-based battery charge balancing methods in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    14. Salvatore Musumeci, 2023. "Energy Conversion Using Electronic Power Converters: Technologies and Applications," Energies, MDPI, vol. 16(8), pages 1-9, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7569-:d:941606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.