IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i15p3791-d1447960.html
   My bibliography  Save this article

Inverter Multi-Machine Grid Integration Resonance Suppression Strategy by Active Damping

Author

Listed:
  • Tianhao Hou

    (Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China)

  • Yunhao Jiang

    (Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China)

  • Zishuo Cai

    (Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China)

Abstract

The current inverter control strategies have limitations in suppressing grid resonance, especially in complex grid environments with high penetration of renewable energy sources. These strate-gies often focus on suppressing resonance at a single frequency point, but their effectiveness is constrained when dealing with multi-band resonance or dynamically changing grid conditions. The study investigates the application of parallel-operated inverters in the grid, particularly their impact on grid stability. A novel active damping strategy is developed to enhance the grid’s dynamic response and suppress grid resonance. The effectiveness of the control strategy is verified through simulation by establishing Norton equivalent circuit models for multiple in-verters. Fast Through simulation, this study comprehensively evaluates the performance and adaptability of the strategy under various conditions. Results demonstrate that implementing the active damping strategy increases the inverter output power from 9.5 kW to 10 kW, an im-provement of 5.26%. System response time is reduced from 50 ms to 30 ms, and post-stabilization fluctuations decrease to 1.5%. These data conclusively prove the effectiveness of the control strategy in enhancing grid stability and reducing resonance effects. The findings underscore the potential of active damping strategies in improving grid performance and in-verter efficiency. However, further research and optimization are necessary to assess the adapt-ability of these strategies under different grid conditions.

Suggested Citation

  • Tianhao Hou & Yunhao Jiang & Zishuo Cai, 2024. "Inverter Multi-Machine Grid Integration Resonance Suppression Strategy by Active Damping," Energies, MDPI, vol. 17(15), pages 1-12, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3791-:d:1447960
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/15/3791/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/15/3791/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaoyi Xu & Wenxi Yao & Gang Xie, 2023. "A Damping Control Strategy to Improve the Stability of Multi-Parallel Grid-Connected PCSs," Energies, MDPI, vol. 16(12), pages 1-17, June.
    2. Tanzim Meraj, Sheikh & Zaihar Yahaya, Nor & Hasan, Kamrul & Hossain Lipu, M.S. & Madurai Elavarasan, Rajvikram & Hussain, Aini & Hannan, M.A. & Muttaqi, Kashem M., 2022. "A filter less improved control scheme for active/reactive energy management in fuel cell integrated grid system with harmonic reduction ability," Applied Energy, Elsevier, vol. 312(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Chunchun & Li, Kunang & He, Hongwen & Zhou, Jiaming & Li, Jianwei & Wei, Zhongbao, 2023. "Health-aware energy management strategy for fuel cell hybrid bus considering air-conditioning control based on TD3 algorithm," Energy, Elsevier, vol. 283(C).
    2. Chen, Jinzhou & He, Hongwen & Wang, Ya-Xiong & Quan, Shengwei & Zhang, Zhendong & Wei, Zhongbao & Han, Ruoyan, 2024. "Research on energy management strategy for fuel cell hybrid electric vehicles based on improved dynamic programming and air supply optimization," Energy, Elsevier, vol. 300(C).
    3. Farhan Mumtaz & Nor Zaihar Yahaya & Sheikh Tanzim Meraj & Narinderjit Singh Sawaran Singh & Md. Siddikur Rahman & Molla Shahadat Hossain Lipu, 2023. "A High Voltage Gain Interleaved DC-DC Converter Integrated Fuel Cell for Power Quality Enhancement of Microgrid," Sustainability, MDPI, vol. 15(9), pages 1-21, April.
    4. Ingilala Jagadeesh & Vairavasundaram Indragandhi, 2022. "Comparative Study of DC-DC Converters for Solar PV with Microgrid Applications," Energies, MDPI, vol. 15(20), pages 1-21, October.
    5. Amine, Hartani Mohamed & Aissa, Benhammou & Rezk, Hegazy & Messaoud, Hamouda & Othmane, Adbdelkhalek & Saad, Mekhilef & Abdelkareem, Mohammad Ali, 2023. "Enhancing hybrid energy storage systems with advanced low-pass filtration and frequency decoupling for optimal power allocation and reliability of cluster of DC-microgrids," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3791-:d:1447960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.