IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4836-d1175585.html
   My bibliography  Save this article

Compensation of the Current Imbalance of an Interleaved DC–DC Buck Converter, Sensorless Online Solution Based on Offline Fuzzy Identification and Post-Linearization

Author

Listed:
  • Robert Baždarić

    (Faculty of Maritime Studies, University of Rijeka, Studentska ulica 2, 51000 Rijeka, Croatia)

  • Jasmin Ćelić

    (Faculty of Maritime Studies, University of Rijeka, Studentska ulica 2, 51000 Rijeka, Croatia)

  • Danjel Vončina

    (Faculty of Electrical Engineering, University of Ljubljana, Tržaška cesta 25, 1000 Ljubljana, Slovenia)

Abstract

This paper presents a new approach to compensate for the current imbalance of an interleaved DC–DC buck converter (IBC), in which the current sensors are not involved in the operation of the converter when it is connected to an invariable load. The current sensors are only used during the offline identification process that builds the universal fuzzy model of the converter’s steady states. Model building involves an upstream identification phase, followed by further dimensionality reduction of the model and error minimization. The method presented here discusses the mathematical complexity of the analytical modelling of hybrid systems and opposes it with a complexity-reduced identification by learning from data. An offline rendered model of the stable and steady states of the IBC is used as a mapping of the required inverter output current to n-fold asymmetric duty cycles, which are distributed among the IBC phases to allow arbitrarily accurate load sharing. The mapping is carried out in the mathematically normalized space of variables or in the physical sense RMS values, achieving the desired robustness in a noisy environment and stability. The final and canonical feedback control is built from the standard and optimized PI controller, which is compensated by the identified IBC model correction. The only measured feedback of the whole controller is the output voltage. Even when applied to the simulation model (physical MATLAB platform) of a two-phase IBC with the built-in system asymmetry, the presented methodology is also applicable to the n-phase IBC without loss of generality.

Suggested Citation

  • Robert Baždarić & Jasmin Ćelić & Danjel Vončina, 2023. "Compensation of the Current Imbalance of an Interleaved DC–DC Buck Converter, Sensorless Online Solution Based on Offline Fuzzy Identification and Post-Linearization," Energies, MDPI, vol. 16(12), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4836-:d:1175585
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4836/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4836/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ingilala Jagadeesh & Vairavasundaram Indragandhi, 2022. "Comparative Study of DC-DC Converters for Solar PV with Microgrid Applications," Energies, MDPI, vol. 15(20), pages 1-21, October.
    2. Rok Pajer & Amor Chowdhury & Miran Rodič, 2019. "Control of a Multiphase Buck Converter, Based on Sliding Mode and Disturbance Estimation, Capable of Linear Large Signal Operation," Energies, MDPI, vol. 12(14), pages 1-26, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cleonor C. das Neves & Walter B. Junior & Renan L. P. de Medeiros & Florindo A. C. Ayres Junior & Iury V. Bessa & Isaías V. Bessa & Gabriela de M. Veroneze & Luiz E. S. e Silva & Nei J. S. Farias, 2020. "Direct Form Digital Robust RST Control Based on Chebyshev Sphere Optimization Applied in a DC-DC Power Converter," Energies, MDPI, vol. 13(15), pages 1-22, July.
    2. Seyed Shahriyar Taghavi & Mahdi Rezvanyvardom & Amin Mirzaei & Saman A. Gorji, 2022. "High Step-Up Three-Level Soft Switching DC-DC Converter for Photovoltaic Generation Systems," Energies, MDPI, vol. 16(1), pages 1-22, December.
    3. Zhuangzhi Dai & Jilong Liu & Kefeng Li & Zhiqin Mai & Guijing Xue, 2023. "Research on a Modeling and Control Strategy for Interleaved Boost Converters with Coupled Inductors," Energies, MDPI, vol. 16(9), pages 1-15, April.
    4. Mohamed S. Elrefaey & Mohamed E. Ibrahim & Elsayed Tag Eldin & Hossam Youssef Hegazy & Elwy E. El-Kholy & Samia Abdalfatah, 2022. "Multiple-Source Single-Output Buck-Boost DC–DC Converter with Increased Reliability for Photovoltaic (PV) Applications," Energies, MDPI, vol. 16(1), pages 1-26, December.
    5. Burhan U Din Abdullah & Suman Lata & Shiva Pujan Jaiswal & Vikas Singh Bhadoria & Georgios Fotis & Athanasios Santas & Lambros Ekonomou, 2023. "A Hybrid Artificial Ecosystem Optimizer and Incremental-Conductance Maximum-Power-Point-Tracking-Controlled Grid-Connected Photovoltaic System," Energies, MDPI, vol. 16(14), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4836-:d:1175585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.