IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7475-d939040.html
   My bibliography  Save this article

Study on IMC-PID Control of Once-Through Steam Generator for Small Fast Reactor

Author

Listed:
  • Kai Xiao

    (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610213, China)

  • Yiliang Li

    (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610213, China)

  • Pengcheng Yang

    (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610213, China)

  • Ying Zhang

    (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610213, China)

  • Yang Zhao

    (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610213, China)

  • Xiaofei Pu

    (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610213, China)

Abstract

The simplification of simulation inevitably leads to model mismatch. In this paper, a once-through steam generator (OTSG) for a small lead bismuth fast reactor (SLBFR) is established and verified, and the OTSG model is simplified by three different methods. Based on the simplified OTSG model, IMC and IMC-PID controllers are designed to verify the sensitivity of the controller to model mismatch. The results show that the sensitivity of the controller to model mismatch is related to the filter parameters. With the increase in λ , the IMC-PID controller becomes insensitive to model mismatch caused by model linearization, non-minimum phase characteristics, noise and time delay. However, the adaptability to model mismatch sacrifices the sensitivity of the system. When λ is too large, the inertia of the controller is too large, resulting in the deterioration of the fast power regulation. Through the research of this paper, the time domain response approximation method is recommended for OTSG model simplification, and λ is recommended to be between 5 and 10 for feedwater IMC-PID controller.

Suggested Citation

  • Kai Xiao & Yiliang Li & Pengcheng Yang & Ying Zhang & Yang Zhao & Xiaofei Pu, 2022. "Study on IMC-PID Control of Once-Through Steam Generator for Small Fast Reactor," Energies, MDPI, vol. 15(20), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7475-:d:939040
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7475/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7475/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Di Jiang & Zhe Dong & Miao Liu & Xiaojin Huang, 2018. "Dynamic Matrix Control for the Thermal Power of MHTGR-Based Nuclear Steam Supply System," Energies, MDPI, vol. 11(10), pages 1-15, October.
    2. Yuxiao Qin & Li Sun & Qingsong Hua & Ping Liu, 2018. "A Fuzzy Adaptive PID Controller Design for Fuel Cell Power Plant," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
    3. Wang, Pengfei & Chen, Zhi & Liao, Longtao & Wan, Jiashuang & Wu, Shifa, 2020. "A multiple-model based internal model control method for power control of small pressurized water reactors," Energy, Elsevier, vol. 210(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuxiao Qin & Guodong Zhao & Qingsong Hua & Li Sun & Soumyadeep Nag, 2019. "Multiobjective Genetic Algorithm-Based Optimization of PID Controller Parameters for Fuel Cell Voltage and Fuel Utilization," Sustainability, MDPI, vol. 11(12), pages 1-20, June.
    2. Wang, Pengfei & Zhang, Jiaxuan & Wan, Jiashuang & Wu, Shifa, 2022. "A fault diagnosis method for small pressurized water reactors based on long short-term memory networks," Energy, Elsevier, vol. 239(PC).
    3. Zhe Dong & Zhonghua Cheng & Yunlong Zhu & Xiaojin Huang & Yujie Dong & Zuoyi Zhang, 2023. "Review on the Recent Progress in Nuclear Plant Dynamical Modeling and Control," Energies, MDPI, vol. 16(3), pages 1-19, February.
    4. Dong, Zhe & Li, Bowen & Li, Junyi & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2021. "Flexible control of nuclear cogeneration plants for balancing intermittent renewables," Energy, Elsevier, vol. 221(C).
    5. Dong, Zhe & Li, Bowen & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2022. "Power-pressure coordinated control of modular high temperature gas-cooled reactors," Energy, Elsevier, vol. 252(C).
    6. Hui, Jiuwu & Yuan, Jingqi, 2022. "Load following control of a pressurized water reactor via finite-time super-twisting sliding mode and extended state observer techniques," Energy, Elsevier, vol. 241(C).
    7. Jiang, Qingfeng & Liang, Wenlong & Zhu, Ze & Li, Yiliang & Wang, Pengfei, 2023. "Multimodel generalized predictive control of a heat-pipe reactor coupled with an open-air Brayton cycle," Energy, Elsevier, vol. 279(C).
    8. Jiang, Di & Dong, Zhe, 2020. "Dynamic matrix control for thermal power of multi-modular high temperature gas-cooled reactor plants," Energy, Elsevier, vol. 198(C).
    9. Cui, Chengcheng & Zhang, Junli & Shen, Jiong, 2023. "System-level modeling, analysis and coordinated control design for the pressurized water reactor nuclear power system," Energy, Elsevier, vol. 283(C).
    10. Wang, Linna & Chen, Chuqi & Chen, Lekang & Li, Zheng & Zeng, Wenjie, 2023. "A coordinated control methodology for small pressurized water reactor with steam dump control system," Energy, Elsevier, vol. 282(C).
    11. Taler, Dawid & Sobota, Tomasz & Jaremkiewicz, Magdalena & Taler, Jan, 2022. "Control of the temperature in the hot liquid tank by using a digital PID controller considering the random errors of the thermometer indications," Energy, Elsevier, vol. 239(PE).
    12. Yuxiao Qin & Li Sun & Qingsong Hua, 2018. "Environmental Health Oriented Optimal Temperature Control for Refrigeration Systems Based on a Fruit Fly Intelligent Algorithm," IJERPH, MDPI, vol. 15(12), pages 1-15, December.
    13. Wang, Pengfei & Zhu, Ze & Liang, Wenlong & Liao, Longtao & Wan, Jiashuang, 2023. "Hybrid mechanistic and neural network modeling of nuclear reactors," Energy, Elsevier, vol. 282(C).
    14. Hui, Jiuwu & Yuan, Jingqi, 2022. "Neural network-based adaptive fault-tolerant control for load following of a MHTGR with prescribed performance and CRDM faults," Energy, Elsevier, vol. 257(C).
    15. Gerkšič, Samo & Vrančić, Damir & Čalič, Dušan & Žerovnik, Gašper & Trkov, Andrej & Kromar, Marjan & Snoj, Luka, 2023. "A perspective of using nuclear power as a dispatchable power source for covering the daily fluctuations of solar power," Energy, Elsevier, vol. 284(C).
    16. Jiang, Di & Dong, Zhe, 2019. "Practical dynamic matrix control of MHTGR-based nuclear steam supply systems," Energy, Elsevier, vol. 185(C), pages 695-707.
    17. Jong-Chan Kim & Jun-Ho Huh & Jae-Sub Ko, 2019. "Improvement of MPPT Control Performance Using Fuzzy Control and VGPI in the PV System for Micro Grid," Sustainability, MDPI, vol. 11(21), pages 1-27, October.
    18. Jie Ma & Suning Ma & Xinyi Zhang & Daifen Chen & Juan He, 2018. "Development of Large-Scale and Quasi Multi-Physics Model for Whole Structure of the Typical Solid Oxide Fuel Cell Stacks," Sustainability, MDPI, vol. 10(9), pages 1-16, August.
    19. Hui, Jiuwu & Lee, Yi-Kuen & Yuan, Jingqi, 2023. "ESO-based adaptive event-triggered load following control design for a pressurized water reactor with samarium–promethium dynamics," Energy, Elsevier, vol. 271(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7475-:d:939040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.