IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i3p503-d1573878.html
   My bibliography  Save this article

Stochastic Scenario Generation Methods for Uncertainty in Wind and Photovoltaic Power Outputs: A Comprehensive Review

Author

Listed:
  • Kun Zheng

    (Electric Power Research Institute of Guangxi Power Grid Co., Ltd., Nanning 650214, China)

  • Zhiyuan Sun

    (Electric Power Research Institute of Guangxi Power Grid Co., Ltd., Nanning 650214, China)

  • Yi Song

    (Electric Power Research Institute of Guangxi Power Grid Co., Ltd., Nanning 650214, China)

  • Chen Zhang

    (College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China)

  • Chunyu Zhang

    (College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China)

  • Fuhao Chang

    (College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China)

  • Dechang Yang

    (College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China)

  • Xueqian Fu

    (College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China)

Abstract

This paper reviews scenario generation techniques for modeling uncertainty in wind and photovoltaic (PV) power generation, a critical component as renewable energy integration into power systems grows. Scenario generation enables the simulation of variable power outputs under different weather conditions, serving as essential inputs for robust, stochastic, and distributionally robust optimization in system planning and operation. We categorize scenario generation methods into explicit and implicit approaches. Explicit methods rely on probabilistic assumptions and parameter estimation, which enable the interpretable yet parameterized modeling of power variability. Implicit methods, powered by deep learning models, offer data-driven scenario generation without predefined distributions, capturing complex temporal and spatial patterns in the renewable output. The review also addresses combined wind and PV power scenario generation, highlighting its importance for accurately reflecting correlated fluctuations in multi-site, interconnected systems. Finally, we address the limitations of scenario generation for wind and PV power integration planning and suggest future research directions.

Suggested Citation

  • Kun Zheng & Zhiyuan Sun & Yi Song & Chen Zhang & Chunyu Zhang & Fuhao Chang & Dechang Yang & Xueqian Fu, 2025. "Stochastic Scenario Generation Methods for Uncertainty in Wind and Photovoltaic Power Outputs: A Comprehensive Review," Energies, MDPI, vol. 18(3), pages 1-31, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:503-:d:1573878
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/3/503/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/3/503/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tang, Chenghui & Wang, Yishen & Xu, Jian & Sun, Yuanzhang & Zhang, Baosen, 2018. "Efficient scenario generation of multiple renewable power plants considering spatial and temporal correlations," Applied Energy, Elsevier, vol. 221(C), pages 348-357.
    2. Jeon, Jooyoung & Taylor, James W., 2016. "Short-term density forecasting of wave energy using ARMA-GARCH models and kernel density estimation," International Journal of Forecasting, Elsevier, vol. 32(3), pages 991-1004.
    3. Muhammad Zubair Chishti & Eyup Dogan, 2024. "Analyzing the determinants of renewable energy: The moderating role of technology and macroeconomic uncertainty," Energy & Environment, , vol. 35(2), pages 874-903, March.
    4. Morales, J.M. & Mínguez, R. & Conejo, A.J., 2010. "A methodology to generate statistically dependent wind speed scenarios," Applied Energy, Elsevier, vol. 87(3), pages 843-855, March.
    5. Sun, Mingyang & Cremer, Jochen & Strbac, Goran, 2018. "A novel data-driven scenario generation framework for transmission expansion planning with high renewable energy penetration," Applied Energy, Elsevier, vol. 228(C), pages 546-555.
    6. Camal, S. & Teng, F. & Michiorri, A. & Kariniotakis, G. & Badesa, L., 2019. "Scenario generation of aggregated Wind, Photovoltaics and small Hydro production for power systems applications," Applied Energy, Elsevier, vol. 242(C), pages 1396-1406.
    7. Li, ChangZheng & Umair, Muhammad, 2023. "Does green finance development goals affects renewable energy in China," Renewable Energy, Elsevier, vol. 203(C), pages 898-905.
    8. Díaz, Guzmán & Gómez-Aleixandre, Javier & Coto, José, 2016. "Wind power scenario generation through state-space specifications for uncertainty analysis of wind power plants," Applied Energy, Elsevier, vol. 162(C), pages 21-30.
    9. Gao, Yuan & Hu, Zehuan & Chen, Wei-An & Liu, Mingzhe, 2024. "Solutions to the insufficiency of label data in renewable energy forecasting: A comparative and integrative analysis of domain adaptation and fine-tuning," Energy, Elsevier, vol. 302(C).
    10. Rami Al-Hajj & Ali Assi & Bilel Neji & Raymond Ghandour & Zaher Al Barakeh, 2023. "Transfer Learning for Renewable Energy Systems: A Survey," Sustainability, MDPI, vol. 15(11), pages 1-28, June.
    11. Adedoyin, Festus Fatai & Ozturk, Ilhan & Agboola, Mary Oluwatoyin & Agboola, Phillips O. & Bekun, Festus Victor, 2021. "The implications of renewable and non-renewable energy generating in Sub-Saharan Africa: The role of economic policy uncertainties," Energy Policy, Elsevier, vol. 150(C).
    12. Xiaofeng Xu & Ziru Lin & Xiang Li & Changjing Shang & Qiang Shen, 2022. "Multi-objective robust optimisation model for MDVRPLS in refined oil distribution," International Journal of Production Research, Taylor & Francis Journals, vol. 60(22), pages 6772-6792, November.
    13. Xiaomei Ma & Yongqian Liu & Jie Yan & Han Wang, 2023. "A WGAN-GP-Based Scenarios Generation Method for Wind and Solar Power Complementary Study," Energies, MDPI, vol. 16(7), pages 1-20, March.
    14. Hart, Elaine K. & Jacobson, Mark Z., 2011. "A Monte Carlo approach to generator portfolio planning and carbon emissions assessments of systems with large penetrations of variable renewables," Renewable Energy, Elsevier, vol. 36(8), pages 2278-2286.
    15. Tan, Qiaofeng & Wen, Xin & Sun, Yuanliang & Lei, Xiaohui & Wang, Zhenni & Qin, Guanghua, 2021. "Evaluation of the risk and benefit of the complementary operation of the large wind-photovoltaic-hydropower system considering forecast uncertainty," Applied Energy, Elsevier, vol. 285(C).
    16. Zhang, Ren Jie & Razzaq, Asif, 2022. "Influence of economic policy uncertainty and financial development on renewable energy consumption in the BRICST region," Renewable Energy, Elsevier, vol. 201(P1), pages 526-533.
    17. Wei, Hu & Hongxuan, Zhang & Yu, Dong & Yiting, Wang & Ling, Dong & Ming, Xiao, 2019. "Short-term optimal operation of hydro-wind-solar hybrid system with improved generative adversarial networks," Applied Energy, Elsevier, vol. 250(C), pages 389-403.
    18. Munkhammar, Joakim & van der Meer, Dennis & Widén, Joakim, 2021. "Very short term load forecasting of residential electricity consumption using the Markov-chain mixture distribution (MCM) model," Applied Energy, Elsevier, vol. 282(PA).
    19. Li, Jinghua & Zhou, Jiasheng & Chen, Bo, 2020. "Review of wind power scenario generation methods for optimal operation of renewable energy systems," Applied Energy, Elsevier, vol. 280(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jinghua & Zhou, Jiasheng & Chen, Bo, 2020. "Review of wind power scenario generation methods for optimal operation of renewable energy systems," Applied Energy, Elsevier, vol. 280(C).
    2. Dong, Wei & Chen, Xianqing & Yang, Qiang, 2022. "Data-driven scenario generation of renewable energy production based on controllable generative adversarial networks with interpretability," Applied Energy, Elsevier, vol. 308(C).
    3. Markos A. Kousounadis-Knousen & Ioannis K. Bazionis & Athina P. Georgilaki & Francky Catthoor & Pavlos S. Georgilakis, 2023. "A Review of Solar Power Scenario Generation Methods with Focus on Weather Classifications, Temporal Horizons, and Deep Generative Models," Energies, MDPI, vol. 16(15), pages 1-29, July.
    4. Hu, Jinxing & Li, Hongru, 2022. "A transfer learning-based scenario generation method for stochastic optimal scheduling of microgrid with newly-built wind farm," Renewable Energy, Elsevier, vol. 185(C), pages 1139-1151.
    5. Chen, Xianqing & Dong, Wei & Yang, Qiang, 2022. "Robust optimal capacity planning of grid-connected microgrid considering energy management under multi-dimensional uncertainties," Applied Energy, Elsevier, vol. 323(C).
    6. Ma, Chao & Xu, Ximeng & Pang, Xiulan & Li, Xiaofeng & Zhang, Pengfei & Liu, Lu, 2024. "Scenario-based ultra-short-term rolling optimal operation of a photovoltaic-energy storage system under forecast uncertainty," Applied Energy, Elsevier, vol. 356(C).
    7. Ye, Lin & Peng, Yishu & Li, Yilin & Li, Zhuo, 2024. "A novel informer-time-series generative adversarial networks for day-ahead scenario generation of wind power," Applied Energy, Elsevier, vol. 364(C).
    8. Liuqing Gu & Jian Xu & Deping Ke & Youhan Deng & Xiaojun Hua & Yi Yu, 2024. "Short-Term Output Scenario Generation of Renewable Energy Using Transformer–Wasserstein Generative Adversarial Nets-Gradient Penalty," Sustainability, MDPI, vol. 16(24), pages 1-20, December.
    9. Wang, Jin & Zhao, Zhipeng & Zhou, Jinglin & Cheng, Chuntian & Su, Huaying, 2024. "Co-optimization for day-ahead scheduling and flexibility response mode of a hydro–wind–solar hybrid system considering forecast uncertainty of variable renewable energy," Energy, Elsevier, vol. 311(C).
    10. Wang, Zhiwen & Shen, Chen & Liu, Feng, 2018. "A conditional model of wind power forecast errors and its application in scenario generation," Applied Energy, Elsevier, vol. 212(C), pages 771-785.
    11. Zhou, Yuzhou & Zhao, Jiexing & Zhai, Qiaozhu, 2021. "100% renewable energy: A multi-stage robust scheduling approach for cascade hydropower system with wind and photovoltaic power," Applied Energy, Elsevier, vol. 301(C).
    12. Cheng, Qian & Liu, Pan & Ming, Bo & Yang, Zhikai & Cheng, Lei & Liu, Zheyuan & Huang, Kangdi & Xu, Weifeng & Gong, Lanqiang, 2024. "Synchronizing short-, mid-, and long-term operations of hydro-wind-photovoltaic complementary systems," Energy, Elsevier, vol. 305(C).
    13. Deng, Jingchuan & Li, Hongru & Hu, Jinxing & Liu, Zhenyu, 2021. "A new wind speed scenario generation method based on spatiotemporal dependency structure," Renewable Energy, Elsevier, vol. 163(C), pages 1951-1962.
    14. Anderson Mitterhofer Iung & Fernando Luiz Cyrino Oliveira & André Luís Marques Marcato, 2023. "A Review on Modeling Variable Renewable Energy: Complementarity and Spatial–Temporal Dependence," Energies, MDPI, vol. 16(3), pages 1-24, January.
    15. Zhang, Juntao & Cheng, Chuntian & Yu, Shen & Su, Huaying, 2022. "Chance-constrained co-optimization for day-ahead generation and reserve scheduling of cascade hydropower–variable renewable energy hybrid systems," Applied Energy, Elsevier, vol. 324(C).
    16. Yang, Hongming & Liang, Rui & Yuan, Yuan & Chen, Bowen & Xiang, Sheng & Liu, Junpeng & Zhao, Huan & Ackom, Emmanuel, 2022. "Distributionally robust optimal dispatch in the power system with high penetration of wind power based on net load fluctuation data," Applied Energy, Elsevier, vol. 313(C).
    17. Chen, Xianqing & Yang, Lingfang & Dong, Wei & Yang, Qiang, 2024. "Net-zero carbon emission oriented Bi-level optimal capacity planning of integrated energy system considering carbon capture and hydrogen facilities," Renewable Energy, Elsevier, vol. 237(PB).
    18. Dhaval Dalal & Muhammad Bilal & Hritik Shah & Anwarul Islam Sifat & Anamitra Pal & Philip Augustin, 2023. "Cross-Correlated Scenario Generation for Renewable-Rich Power Systems Using Implicit Generative Models," Energies, MDPI, vol. 16(4), pages 1-20, February.
    19. Wang, Zizhao & Li, Yang & Wu, Feng & Wu, Jiawei & Shi, Linjun & Lin, Keman, 2024. "Multi-objective day-ahead scheduling of cascade hydropower-photovoltaic complementary system with pumping installation," Energy, Elsevier, vol. 290(C).
    20. Sun, Gebing & Li, Guozhi & Dilanchiev, Azer & Kazimova, Asli, 2023. "Promotion of green financing: Role of renewable energy and energy transition in China," Renewable Energy, Elsevier, vol. 210(C), pages 769-775.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:503-:d:1573878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.