IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v540y2020ics0378437119317078.html
   My bibliography  Save this article

Analysis of two dimensional Carreau fluid flow due to normal surface condition: A generalized Fourier’s and Fick’s laws

Author

Listed:
  • Khan, Mair
  • Shahid, Amna
  • Salahuddin, T.
  • Malik, M.Y.
  • Hussain, Arif

Abstract

In this work, we address the thermal and concentration diffusions of magneto-hydrodynamic Carreau fluid flow induced due to a stretching cylinder along with chemical reaction and zero normal flux condition. The energy and concentration expressions are combined with new theories of heat and mass diffusions (Cattaneo–Christov), which is improve form of Fourier’s and Fick’s laws. The additional terms of thermal and concentration relaxation times are added in Cattaneo–Christov double diffusions. Similarity methodology is employed to moderate the governing PDEs (partial differential equations) into the nonlinear ODEs (ordinary differential equations) which are solved using RK-4 based shooting technique. The remarkable results for velocity, concentration, temperature distributions are established by graphs. Plots and tables presenting influence of friction factor, local heat and mass transfer rate are also examined. It is seen that the temperature distribution increases by enhancing thermophoresis parameter, while reduces with increase values of Prandtl number, Brownian motion and curvature parameter. Moreover, the velocity profile increases with increase values of curvature parameter, Weissenberg number and power law index. The computational results are also compared with current data for limiting cases and good agreement is found.

Suggested Citation

  • Khan, Mair & Shahid, Amna & Salahuddin, T. & Malik, M.Y. & Hussain, Arif, 2020. "Analysis of two dimensional Carreau fluid flow due to normal surface condition: A generalized Fourier’s and Fick’s laws," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
  • Handle: RePEc:eee:phsmap:v:540:y:2020:i:c:s0378437119317078
    DOI: 10.1016/j.physa.2019.123024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119317078
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Zhi-Yong & Jian, Yong-Jun, 2017. "Entropy generation of two-layer magnetohydrodynamic electroosmotic flow through microparallel channels," Energy, Elsevier, vol. 139(C), pages 1080-1093.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khan, Mair & El Shafey, A.M. & Salahuddin, T. & Khan, Farzana, 2020. "Chemically Homann stagnation point flow of Carreau fluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    2. Zhang, Tao & Song, Lingjun & Yang, Fuyuan & Ouyang, Minggao, 2024. "Research on oxygen purity based on industrial scale alkaline water electrolysis system with 50Nm3 H2/h," Applied Energy, Elsevier, vol. 360(C).
    3. Khan, Mair & Salahuddin, T. & Malik, M.Y. & Khan, Farzana, 2020. "Change in internal energy of Carreau fluid flow along with Ohmic heating: A Von Karman application," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yongbo & Jian, Yongjun & Yang, Chunhong, 2020. "Electrochemomechanical energy conversion efficiency in curved rectangular nanochannels," Energy, Elsevier, vol. 198(C).
    2. Saha, Sujit & Kundu, Balaram, 2023. "Multi-objective optimization of electrokinetic energy conversion efficiency and entropy generation for streaming potential driven electromagnetohydrodynamic flow of couple stress Casson fluid in micro," Energy, Elsevier, vol. 284(C).
    3. Balaram Kundu & Sujit Saha, 2022. "Review and Analysis of Electro-Magnetohydrodynamic Flow and Heat Transport in Microchannels," Energies, MDPI, vol. 15(19), pages 1-51, September.
    4. Zhang, Kaiyu & Wang, Yibai & Tang, Haibin & Li, Yong & Wang, Baojun & York, Thomas M. & Yang, Lijun, 2020. "Two-dimensional analytical investigation into energy conversion and efficiency maximization of magnetohydrodynamic swirling flow actuators," Energy, Elsevier, vol. 209(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:540:y:2020:i:c:s0378437119317078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.