IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6546-d909365.html
   My bibliography  Save this article

Solar–Wind System for the Remote Objects of Railway Transport Infrastructure

Author

Listed:
  • Olexandr Shavolkin

    (Department of Computer Engineering and Electromechanics, Institute of Engineering and Information Technologies, Kyiv National University of Technologies and Design, Nemyrovycha-Danchenka Street, 2, 01011 Kyiv, Ukraine)

  • Juraj Gerlici

    (Department of Transport and Handling Machines, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 01026 Zilina, Slovakia)

  • Iryna Shvedchykova

    (Department of Computer Engineering and Electromechanics, Institute of Engineering and Information Technologies, Kyiv National University of Technologies and Design, Nemyrovycha-Danchenka Street, 2, 01011 Kyiv, Ukraine)

  • Kateryna Kravchenko

    (Department of Transport and Handling Machines, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 01026 Zilina, Slovakia)

Abstract

The article deals with adding the power of a local object to a solar–wind system when consuming electricity from the grid within the power limit. The parameter’s calculation technique for the different values of degree of power increase was considered. The load schedule, the electricity consumption, use of installed power, boundary conditions of generation, and ensuring energy balance were taken into account. Furthermore, data from the renewable source’s generation archive for the location of the object were used. The control of the power consumed by the object was carried out on the taken values of added and total load power with binding to photovoltaic generation. The added power reference on some time intervals was carried out according to the actual renewable generation power value. This increases the degree of use of the battery capacity and energy from renewable sources. The reference of the added power with the state of battery charge formation was carried out according to the forecast. One cycle of deep battery discharge at the evening peak was used to extend the battery life. For the accepted conditions with the average monthly values of renewable energy sources generation with an increase in power by 1.6 times, there was a decrease in electricity consumption by 1.57–4 times.

Suggested Citation

  • Olexandr Shavolkin & Juraj Gerlici & Iryna Shvedchykova & Kateryna Kravchenko, 2022. "Solar–Wind System for the Remote Objects of Railway Transport Infrastructure," Energies, MDPI, vol. 15(18), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6546-:d:909365
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6546/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6546/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bowen Yang & Yougui Guo & Xi Xiao & Peigen Tian, 2020. "Bi-level Capacity Planning of Wind-PV-Battery Hybrid Generation System Considering Return on Investment," Energies, MDPI, vol. 13(12), pages 1-18, June.
    2. Olexandr Shavolkin & Iryna Shvedchykova & Michal Kolcun & Dušan Medved’, 2022. "Improvement of the Grid-Tied Solar-Wind System with a Storage Battery for the Self-Consumption of a Local Object," Energies, MDPI, vol. 15(14), pages 1-18, July.
    3. Nallapaneni Manoj Kumar & Shauhrat S. Chopra & Aneesh A. Chand & Rajvikram Madurai Elavarasan & G.M. Shafiullah, 2020. "Hybrid Renewable Energy Microgrid for a Residential Community: A Techno-Economic and Environmental Perspective in the Context of the SDG7," Sustainability, MDPI, vol. 12(10), pages 1-30, May.
    4. Olexandr Shavolkin & Iryna Shvedchykova & Juraj Gerlici & Kateryna Kravchenko & František Pribilinec, 2022. "Use of Hybrid Photovoltaic Systems with a Storage Battery for the Remote Objects of Railway Transport Infrastructure," Energies, MDPI, vol. 15(13), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olexandr Shavolkin & Iryna Shvedchykova & Michal Kolcun & Dušan Medveď, 2023. "Improvement of a Hybrid Solar-Wind System for Self-Consumption of a Local Object with Control of the Power Consumed from the Grid," Energies, MDPI, vol. 16(15), pages 1-21, August.
    2. Wen-Chang Tsai & Chih-Ming Hong & Chia-Sheng Tu & Whei-Min Lin & Chiung-Hsing Chen, 2023. "A Review of Modern Wind Power Generation Forecasting Technologies," Sustainability, MDPI, vol. 15(14), pages 1-40, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olexandr Shavolkin & Iryna Shvedchykova & Michal Kolcun & Dušan Medved’, 2022. "Improvement of the Grid-Tied Solar-Wind System with a Storage Battery for the Self-Consumption of a Local Object," Energies, MDPI, vol. 15(14), pages 1-18, July.
    2. Liu Lu & Wei Wei, 2023. "Influence of Public Sports Services on Residents’ Mental Health at Communities Level: New Insights from China," IJERPH, MDPI, vol. 20(2), pages 1-14, January.
    3. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    4. Luis Fernando Grisales-Noreña & Oscar Danilo Montoya & Alberto-Jesus Perea-Moreno, 2023. "Optimal Integration of Battery Systems in Grid-Connected Networks for Reducing Energy Losses and CO 2 Emissions," Mathematics, MDPI, vol. 11(7), pages 1-23, March.
    5. Ana Rita Silva & Ana Estanqueiro, 2022. "From Wind to Hybrid: A Contribution to the Optimal Design of Utility-Scale Hybrid Power Plants," Energies, MDPI, vol. 15(7), pages 1-19, April.
    6. Sachin Kumar & Kumari Sarita & Akanksha Singh S Vardhan & Rajvikram Madurai Elavarasan & R. K. Saket & Narottam Das, 2020. "Reliability Assessment of Wind-Solar PV Integrated Distribution System Using Electrical Loss Minimization Technique," Energies, MDPI, vol. 13(21), pages 1-30, October.
    7. Rovick Tarife & Yosuke Nakanishi & Yicheng Zhou & Noel Estoperez & Anacita Tahud, 2023. "Integrated GIS and Fuzzy-AHP Framework for Suitability Analysis of Hybrid Renewable Energy Systems: A Case in Southern Philippines," Sustainability, MDPI, vol. 15(3), pages 1-25, January.
    8. Prakash, K. & Ali, M. & Hossain, M A & Kumar, Nallapaneni Manoj & Islam, M.R. & Macana, C.A. & Chopra, Shauhrat S. & Pota, H.R., 2022. "Planning battery energy storage system in line with grid support parameters enables circular economy aligned ancillary services in low voltage networks," Renewable Energy, Elsevier, vol. 201(P1), pages 802-820.
    9. Dongqing Sun & Fanzhi Wang & Nanxu Chen & Jing Chen, 2021. "The Impacts of Technology Shocks on Sustainable Development from the Perspective of Energy Structure—A DSGE Model Approach," Sustainability, MDPI, vol. 13(15), pages 1-20, August.
    10. Wunvisa Tipasri & Amnart Suksri & Karthikeyan Velmurugan & Tanakorn Wongwuttanasatian, 2022. "Energy Management for an Air Conditioning System Using a Storage Device to Reduce the On-Peak Power Consumption," Energies, MDPI, vol. 15(23), pages 1-19, November.
    11. Venkatraman Indrajayanthan & Nalin Kant Mohanty, 2022. "Assessment of Clean Energy Transition Potential in Major Power-Producing States of India Using Multi-Criteria Decision Analysis," Sustainability, MDPI, vol. 14(3), pages 1-27, January.
    12. Mageswaran Rengasamy & Sivasankar Gangatharan & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2020. "The Motivation for Incorporation of Microgrid Technology in Rooftop Solar Photovoltaic Deployment to Enhance Energy Economics," Sustainability, MDPI, vol. 12(24), pages 1-27, December.
    13. S. Ananda Kumar & M. S. P. Subathra & Nallapaneni Manoj Kumar & Maria Malvoni & N. J. Sairamya & S. Thomas George & Easter S. Suviseshamuthu & Shauhrat S. Chopra, 2020. "A Novel Islanding Detection Technique for a Resilient Photovoltaic-Based Distributed Power Generation System Using a Tunable-Q Wavelet Transform and an Artificial Neural Network," Energies, MDPI, vol. 13(16), pages 1-22, August.
    14. Sameh Mahjoub & Larbi Chrifi-Alaoui & Saïd Drid & Nabil Derbel, 2023. "Control and Implementation of an Energy Management Strategy for a PV–Wind–Battery Microgrid Based on an Intelligent Prediction Algorithm of Energy Production," Energies, MDPI, vol. 16(4), pages 1-26, February.
    15. Juan Carlos Osorio-Aravena & Marina Frolova & Julio Terrados-Cepeda & Emilio Muñoz-Cerón, 2020. "Spatial Energy Planning: A Review," Energies, MDPI, vol. 13(20), pages 1-14, October.
    16. Maria Merry Marianti & Paulina Permatasari & Elvy Maria Manurung & Irwanda Wisnu Wardana & Tri Emil Alim & Firli Wulansari Wahyuputri, 2023. "Village Fund for Renewable Energy Development: A Case Study of Rural Area in Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 225-236, July.
    17. Kabir A. Mamun & F. R. Islam & R. Haque & Aneesh A. Chand & Kushal A. Prasad & Krishneel K. Goundar & Krishneel Prakash & Sidharth Maharaj, 2022. "Systematic Modeling and Analysis of On-Board Vehicle Integrated Novel Hybrid Renewable Energy System with Storage for Electric Vehicles," Sustainability, MDPI, vol. 14(5), pages 1-33, February.
    18. Takele Ferede Agajie & Ahmed Ali & Armand Fopah-Lele & Isaac Amoussou & Baseem Khan & Carmen Lilí Rodríguez Velasco & Emmanuel Tanyi, 2023. "A Comprehensive Review on Techno-Economic Analysis and Optimal Sizing of Hybrid Renewable Energy Sources with Energy Storage Systems," Energies, MDPI, vol. 16(2), pages 1-26, January.
    19. Batara Surya & Seri Suriani & Firman Menne & Herminawaty Abubakar & Muhammad Idris & Emil Salim Rasyidi & Hasanuddin Remmang, 2021. "Community Empowerment and Utilization of Renewable Energy: Entrepreneurial Perspective for Community Resilience Based on Sustainable Management of Slum Settlements in Makassar City, Indonesia," Sustainability, MDPI, vol. 13(6), pages 1-36, March.
    20. Padmanathan Kasinathan & Rishi Pugazhendhi & Rajvikram Madurai Elavarasan & Vigna Kumaran Ramachandaramurthy & Vinoth Ramanathan & Senthilkumar Subramanian & Sachin Kumar & Kamalakannan Nandhagopal & , 2022. "Realization of Sustainable Development Goals with Disruptive Technologies by Integrating Industry 5.0, Society 5.0, Smart Cities and Villages," Sustainability, MDPI, vol. 14(22), pages 1-31, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6546-:d:909365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.