IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4883-d854706.html
   My bibliography  Save this article

Use of Hybrid Photovoltaic Systems with a Storage Battery for the Remote Objects of Railway Transport Infrastructure

Author

Listed:
  • Olexandr Shavolkin

    (Department of Computer Engineering and Electromechanics, Institute of Engineering and Information Technologies, Kyiv National University of Technologies and Design, Nemyrovycha-Danchenka Street, 2, 01011 Kyiv, Ukraine)

  • Iryna Shvedchykova

    (Department of Computer Engineering and Electromechanics, Institute of Engineering and Information Technologies, Kyiv National University of Technologies and Design, Nemyrovycha-Danchenka Street, 2, 01011 Kyiv, Ukraine)

  • Juraj Gerlici

    (Department of Transport and Handling Machines, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 0102632 Zilina, Slovakia)

  • Kateryna Kravchenko

    (Department of Transport and Handling Machines, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 0102632 Zilina, Slovakia)

  • František Pribilinec

    (Department of Transport and Handling Machines, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 0102632 Zilina, Slovakia)

Abstract

The use of a grid-tied photovoltaic system with a storage battery to increase the power of objects of railway transport infrastructure above the limit on consumption from the grid with the possibility of energy saving is considered. The methods of analysis of energy processes in photovoltaic systems with a storage battery are used. They are added via the processing of archival data of power generation of a photovoltaic battery and computer modeling results. A technique of system parameter calculation to increase the power according to the given load schedule of the object at constant and maximum possible degree of power increasing is developed. The values of the average monthly generation of a photovoltaic battery at the location point of the object based on archival data are used. The principle of the control of power, consumed from the grid, according to the given values of the added and total load is developed. Using the basic schedule of added load power in connection with the graph of photovoltaic battery generation allows reducing the installed power of the storage battery. The additional reduction in the installed power of the photovoltaic and storage batteries is possible at the corresponding choice of the degree of power load increasing. The joint formation of current schedules with reference to the added power value and state of charge of the battery according to the short-term forecast of the generation of a photovoltaic battery is proposed. The value of added power at certain intervals of time is set according to the graph of actual generation of the photovoltaic battery, which contributes to the maximum use of its energy. With the average monthly generation of a photovoltaic battery in the spring–autumn period, the discharge of the battery during the hours of the morning load peak is not used. This reduces the number of deep discharge cycles and extends the battery life. The description of energy processes in steady-state conditions for the daily cycle of system functioning is formalized. On this basis, a mathematical model is developed in MATLAB with an estimation of the costs of electricity consumed from the grid. When modeling, archival data are used for days when the generation of a photovoltaic battery over time intervals is close to average monthly values. This makes it possible to evaluate the effectiveness of system management under conditions close to real during the year.

Suggested Citation

  • Olexandr Shavolkin & Iryna Shvedchykova & Juraj Gerlici & Kateryna Kravchenko & František Pribilinec, 2022. "Use of Hybrid Photovoltaic Systems with a Storage Battery for the Remote Objects of Railway Transport Infrastructure," Energies, MDPI, vol. 15(13), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4883-:d:854706
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4883/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4883/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khezri, Rahmat & Mahmoudi, Amin & Aki, Hirohisa, 2022. "Optimal planning of solar photovoltaic and battery storage systems for grid-connected residential sector: Review, challenges and new perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    2. Lorenzi, Guido & Silva, Carlos Augusto Santos, 2016. "Comparing demand response and battery storage to optimize self-consumption in PV systems," Applied Energy, Elsevier, vol. 180(C), pages 524-535.
    3. Nicolson, Moira L. & Fell, Michael J. & Huebner, Gesche M., 2018. "Consumer demand for time of use electricity tariffs: A systematized review of the empirical evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 276-289.
    4. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Kalivoda & Larysa Neduzha, 2022. "Running Dynamics of Rail Vehicles," Energies, MDPI, vol. 15(16), pages 1-3, August.
    2. Jing Teng & Longkai Li & Yajun Jiang & Ruifeng Shi, 2022. "A Review of Clean Energy Exploitation for Railway Transportation Systems and Its Enlightenment to China," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    3. Olexandr Shavolkin & Juraj Gerlici & Iryna Shvedchykova & Kateryna Kravchenko, 2022. "Solar–Wind System for the Remote Objects of Railway Transport Infrastructure," Energies, MDPI, vol. 15(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oscar Villegas Mier & Anna Dittmann & Wiebke Herzberg & Holger Ruf & Elke Lorenz & Michael Schmidt & Rainer Gasper, 2023. "Predictive Control of a Real Residential Heating System with Short-Term Solar Power Forecast," Energies, MDPI, vol. 16(19), pages 1-19, October.
    2. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe & Ozturk, Ilhan, 2022. "Economics and policy implications of residential photovoltaic systems in Italy's developed market," Utilities Policy, Elsevier, vol. 79(C).
    3. Sun, Xiaoqin & Lin, Yian & Zhu, Ziyang & Li, Jie, 2022. "Optimized design of a distributed photovoltaic system in a building with phase change materials," Applied Energy, Elsevier, vol. 306(PA).
    4. Azuatalam, Donald & Paridari, Kaveh & Ma, Yiju & Förstl, Markus & Chapman, Archie C. & Verbič, Gregor, 2019. "Energy management of small-scale PV-battery systems: A systematic review considering practical implementation, computational requirements, quality of input data and battery degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 555-570.
    5. Tervo, Eric & Agbim, Kenechi & DeAngelis, Freddy & Hernandez, Jeffrey & Kim, Hye Kyung & Odukomaiya, Adewale, 2018. "An economic analysis of residential photovoltaic systems with lithium ion battery storage in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1057-1066.
    6. Lucas Deotti & Wanessa Guedes & Bruno Dias & Tiago Soares, 2020. "Technical and Economic Analysis of Battery Storage for Residential Solar Photovoltaic Systems in the Brazilian Regulatory Context," Energies, MDPI, vol. 13(24), pages 1-30, December.
    7. Florian Klausmann & Anna-Lena Klingler, 2023. "Adaptive Control Strategy for Stationary Electric Battery Storage Systems with Reliable Peak Load Limitation at Maximum Self-Consumption of Locally Generated Energy," Energies, MDPI, vol. 16(9), pages 1-19, May.
    8. Jose Luis Torres-Moreno & Antonio Gimenez-Fernandez & Manuel Perez-Garcia & Francisco Rodriguez, 2018. "Energy Management Strategy for Micro-Grids with PV-Battery Systems and Electric Vehicles," Energies, MDPI, vol. 11(3), pages 1-13, February.
    9. Jaszczur, Marek & Hassan, Qusay & Abdulateef, Ammar M. & Abdulateef, Jasim, 2021. "Assessing the temporal load resolution effect on the photovoltaic energy flows and self-consumption," Renewable Energy, Elsevier, vol. 169(C), pages 1077-1090.
    10. O'Shaughnessy, Eric & Cutler, Dylan & Ardani, Kristen & Margolis, Robert, 2018. "Solar plus: A review of the end-user economics of solar PV integration with storage and load control in residential buildings," Applied Energy, Elsevier, vol. 228(C), pages 2165-2175.
    11. O'Shaughnessy, Eric & Cutler, Dylan & Ardani, Kristen & Margolis, Robert, 2018. "Solar plus: Optimization of distributed solar PV through battery storage and dispatchable load in residential buildings," Applied Energy, Elsevier, vol. 213(C), pages 11-21.
    12. Krystian Janusz Cieślak, 2022. "Multivariant Analysis of Photovoltaic Performance with Consideration of Self-Consumption," Energies, MDPI, vol. 15(18), pages 1-13, September.
    13. Kazhamiaka, Fiodar & Jochem, Patrick & Keshav, Srinivasan & Rosenberg, Catherine, 2017. "On the influence of jurisdiction on the profitability of residential photovoltaic-storage systems: A multi-national case study," Energy Policy, Elsevier, vol. 109(C), pages 428-440.
    14. Schram, Wouter L. & Lampropoulos, Ioannis & van Sark, Wilfried G.J.H.M., 2018. "Photovoltaic systems coupled with batteries that are optimally sized for household self-consumption: Assessment of peak shaving potential," Applied Energy, Elsevier, vol. 223(C), pages 69-81.
    15. Jaszczur, Marek & Hassan, Qusay, 2020. "An optimisation and sizing of photovoltaic system with supercapacitor for improving self-consumption," Applied Energy, Elsevier, vol. 279(C).
    16. de Oliveira e Silva, Guilherme & Hendrick, Patrick, 2017. "Photovoltaic self-sufficiency of Belgian households using lithium-ion batteries, and its impact on the grid," Applied Energy, Elsevier, vol. 195(C), pages 786-799.
    17. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    18. Federica Cucchiella & Idiano D’Adamo & Paolo Rosa, 2015. "Industrial Photovoltaic Systems: An Economic Analysis in Non-Subsidized Electricity Markets," Energies, MDPI, vol. 8(11), pages 1-16, November.
    19. Avilés A., Camilo & Oliva H., Sebastian & Watts, David, 2019. "Single-dwelling and community renewable microgrids: Optimal sizing and energy management for new business models," Applied Energy, Elsevier, vol. 254(C).
    20. Reza Fachrizal & Joakim Munkhammar, 2020. "Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles," Energies, MDPI, vol. 13(5), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4883-:d:854706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.