IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6387-d903913.html
   My bibliography  Save this article

Modern Techniques for the Optimal Power Flow Problem: State of the Art

Author

Listed:
  • Benedetto-Giuseppe Risi

    (Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Via Vito Volterra 62, 00146 Rome, Italy
    Enel Grids, Via Mantova 24, 00198 Rome, Italy)

  • Francesco Riganti-Fulginei

    (Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Via Vito Volterra 62, 00146 Rome, Italy)

  • Antonino Laudani

    (Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Via Vito Volterra 62, 00146 Rome, Italy)

Abstract

Due to its significance in the operation of power systems, the optimal power flow (OPF) problem has attracted increasing interest with the introduction of smart grids. Optimal power flow developed as a crucial instrument for resource planning effectiveness as well as for enhancing the performance of electrical power networks. Transmission line losses, total generation costs, FACTS (flexible alternating current transmission system) costs, voltage deviations, total power transfer capability, voltage stability, emission of generation units, system security, etc., are just a few examples of objective functions related to the electric power system that can be optimized. Due to the nonlinear nature of optimal power flow problems, the classical approaches may become locked in local optimums, hence, metaheuristic optimization techniques are frequently used to solve these issues. The most recent optimization strategies used to solve optimal power flow problems are discussed in this paper as the state of the art (according to the authors, the most pertinent studies). The presented optimization techniques are grouped according to their sources of inspiration, including human-inspired algorithms (harmony search, teaching learning-based optimization, tabu search, etc.), evolutionary-inspired algorithms (differential evolution, genetic algorithms, etc.), and physics-inspired methods (particle swarm optimization, cuckoo search algorithm, firefly algorithm, ant colony optimization algorithm, etc.).

Suggested Citation

  • Benedetto-Giuseppe Risi & Francesco Riganti-Fulginei & Antonino Laudani, 2022. "Modern Techniques for the Optimal Power Flow Problem: State of the Art," Energies, MDPI, vol. 15(17), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6387-:d:903913
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6387/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6387/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khaled Nusair & Lina Alhmoud, 2020. "Application of Equilibrium Optimizer Algorithm for Optimal Power Flow with High Penetration of Renewable Energy," Energies, MDPI, vol. 13(22), pages 1-35, November.
    2. José Luis Picard & Irene Aguado & Noemi G. Cobos & Vicente Fuster-Roig & Alfredo Quijano-López, 2021. "Electric Distribution System Planning Methodology Considering Distributed Energy Resources: A Contribution towards Real Smart Grid Deployment," Energies, MDPI, vol. 14(7), pages 1-18, March.
    3. Rui Li & Wei Wang & Zhe Chen & Jiuchun Jiang & Weige Zhang, 2017. "A Review of Optimal Planning Active Distribution System: Models, Methods, and Future Researches," Energies, MDPI, vol. 10(11), pages 1-27, October.
    4. Aminjon Gulakhmadov & Salima Asanova & Damira Asanova & Murodbek Safaraliev & Alexander Tavlintsev & Egor Lyukhanov & Sergey Semenenko & Ismoil Odinaev, 2022. "Power Flows and Losses Calculation in Radial Networks by Representing the Network Topology in the Hierarchical Structure Form," Energies, MDPI, vol. 15(3), pages 1-13, January.
    5. Oscar Danilo Montoya & Federico Martin Serra & Cristian Hernan De Angelo & Harold R. Chamorro & Lazaro Alvarado-Barrios, 2021. "Heuristic Methodology for Planning AC Rural Medium-Voltage Distribution Grids," Energies, MDPI, vol. 14(16), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fatima Zahra Zahraoui & Mehdi Et-taoussi & Houssam Eddine Chakir & Hamid Ouadi & Brahim Elbhiri, 2023. "Bellman–Genetic Hybrid Algorithm Optimization in Rural Area Microgrids," Energies, MDPI, vol. 16(19), pages 1-26, September.
    2. Diego Jose da Silva & Edmarcio Antonio Belati & Jesús M. López-Lezama, 2023. "A Mathematical Programming Approach for the Optimal Operation of Storage Systems, Photovoltaic and Wind Power Generation," Energies, MDPI, vol. 16(3), pages 1-24, January.
    3. Zheng Liu & Maryam Majidi & Haonan Wang & Denis Mende & Martin Braun, 2023. "Time Series Optimization-Based Characteristic Curve Calculation for Local Reactive Power Control Using Pandapower - PowerModels Interface," Energies, MDPI, vol. 16(11), pages 1-24, May.
    4. Mauro Jurado & Eduardo Salazar & Mauricio Samper & Rodolfo Rosés & Diego Ojeda Esteybar, 2023. "Day-Ahead Operational Planning for DisCos Based on Demand Response Flexibility and Volt/Var Control," Energies, MDPI, vol. 16(20), pages 1-20, October.
    5. Hasanien, Hany M. & Alsaleh, Ibrahim & Alassaf, Abdullah & Alateeq, Ayoob, 2023. "Enhanced coati optimization algorithm-based optimal power flow including renewable energy uncertainties and electric vehicles," Energy, Elsevier, vol. 283(C).
    6. Sebastian Bottler & Christian Weindl, 2023. "State-Space Load Flow Calculation of an Energy System with Sector-Coupling Technologies," Energies, MDPI, vol. 16(12), pages 1-22, June.
    7. Muhammad Bachtiar Nappu & Ardiaty Arief & Willy Akbar Ajami, 2023. "Energy Efficiency in Modern Power Systems Utilizing Advanced Incremental Particle Swarm Optimization–Based OPF," Energies, MDPI, vol. 16(4), pages 1-13, February.
    8. Haltor Mataifa & Senthil Krishnamurthy & Carl Kriger, 2023. "Comparative Analysis of the Particle Swarm Optimization and Primal-Dual Interior-Point Algorithms for Transmission System Volt/VAR Optimization in Rectangular Voltage Coordinates," Mathematics, MDPI, vol. 11(19), pages 1-29, September.
    9. Yichao Xie & Bowen Zhou & Zhenyu Wang & Bo Yang & Liaoyi Ning & Yanhui Zhang, 2023. "Industrial Carbon Footprint (ICF) Calculation Approach Based on Bayesian Cross-Validation Improved Cyclic Stacking," Sustainability, MDPI, vol. 15(19), pages 1-35, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oscar Danilo Montoya & Federico Martin Serra & Cristian Hernan De Angelo & Harold R. Chamorro & Lazaro Alvarado-Barrios, 2021. "Heuristic Methodology for Planning AC Rural Medium-Voltage Distribution Grids," Energies, MDPI, vol. 14(16), pages 1-20, August.
    2. Xinghua Wang & Fucheng Zhong & Yilin Xu & Xixian Liu & Zezhong Li & Jianan Liu & Zhuoli Zhao, 2023. "Extraction and Joint Method of PV–Load Typical Scenes Considering Temporal and Spatial Distribution Characteristics," Energies, MDPI, vol. 16(18), pages 1-19, September.
    3. Nikolaos Koutsoukis & Pavlos Georgilakis, 2019. "A Chance-Constrained Multistage Planning Method for Active Distribution Networks," Energies, MDPI, vol. 12(21), pages 1-19, October.
    4. Ildar Daminov & Rémy Rigo-Mariani & Raphael Caire & Anton Prokhorov & Marie-Cécile Alvarez-Hérault, 2021. "Demand Response Coupled with Dynamic Thermal Rating for Increased Transformer Reserve and Lifetime," Energies, MDPI, vol. 14(5), pages 1-27, March.
    5. Gheorghe Grigoraș & Livia Noroc & Ecaterina Chelaru & Florina Scarlatache & Bogdan-Constantin Neagu & Ovidiu Ivanov & Mihai Gavrilaș, 2021. "Coordinated Control of Single-Phase End-Users for Phase Load Balancing in Active Electric Distribution Networks," Mathematics, MDPI, vol. 9(21), pages 1-29, October.
    6. Ragab El-Sehiemy & Abdallah Elsayed & Abdullah Shaheen & Ehab Elattar & Ahmed Ginidi, 2021. "Scheduling of Generation Stations, OLTC Substation Transformers and VAR Sources for Sustainable Power System Operation Using SNS Optimizer," Sustainability, MDPI, vol. 13(21), pages 1-24, October.
    7. Mohammed, Nooriya A. & Al-Bazi, Ammar, 2021. "Management of renewable energy production and distribution planning using agent-based modelling," Renewable Energy, Elsevier, vol. 164(C), pages 509-520.
    8. Mulusew Ayalew & Baseem Khan & Issaias Giday & Om Prakash Mahela & Mahdi Khosravy & Neeraj Gupta & Tomonobu Senjyu, 2022. "Integration of Renewable Based Distributed Generation for Distribution Network Expansion Planning," Energies, MDPI, vol. 15(4), pages 1-17, February.
    9. Adam Lesniak & Dawid Chudy & Rafal Dzikowski, 2020. "Modelling of Distributed Resource Aggregation for the Provision of Ancillary Services," Energies, MDPI, vol. 13(18), pages 1-16, September.
    10. Gustavo L. Aschidamini & Gederson A. da Cruz & Mariana Resener & Roberto C. Leborgne & Luís A. Pereira, 2022. "A Framework for Reliability Assessment in Expansion Planning of Power Distribution Systems," Energies, MDPI, vol. 15(14), pages 1-24, July.
    11. Alex Valenzuela & Iván Montalvo & Esteban Inga, 2019. "A Decision-Making Tool for Electric Distribution Network Planning Based on Heuristics and Georeferenced Data," Energies, MDPI, vol. 12(21), pages 1-18, October.
    12. Yuriy Bilan & Marcin Rabe & Katarzyna Widera, 2022. "Distributed Energy Resources: Operational Benefits," Energies, MDPI, vol. 15(23), pages 1-7, November.
    13. Syed Ali Abbas Kazmi & Usama Ameer Khan & Hafiz Waleed Ahmad & Sajid Ali & Dong Ryeol Shin, 2020. "A Techno-Economic Centric Integrated Decision-Making Planning Approach for Optimal Assets Placement in Meshed Distribution Network Across the Load Growth," Energies, MDPI, vol. 13(6), pages 1-71, March.
    14. Soheil Younesi & Bahman Ahmadi & Oguzhan Ceylan & Aydogan Ozdemir, 2022. "Optimum Parallel Processing Schemes to Improve the Computation Speed for Renewable Energy Allocation and Sizing Problems," Energies, MDPI, vol. 15(24), pages 1-18, December.
    15. Gustavo L. Aschidamini & Gederson A. da Cruz & Mariana Resener & Maicon J. S. Ramos & Luís A. Pereira & Bibiana P. Ferraz & Sérgio Haffner & Panos M. Pardalos, 2022. "Expansion Planning of Power Distribution Systems Considering Reliability: A Comprehensive Review," Energies, MDPI, vol. 15(6), pages 1-29, March.
    16. Vasileios Evangelopoulos & Panagiotis Karafotis & Pavlos Georgilakis, 2020. "Probabilistic Spatial Load Forecasting Based on Hierarchical Trending Method," Energies, MDPI, vol. 13(18), pages 1-25, September.
    17. Yang, Qiangda & Dong, Ning & Zhang, Jie, 2021. "An enhanced adaptive bat algorithm for microgrid energy scheduling," Energy, Elsevier, vol. 232(C).
    18. Julián David Pradilla-Rozo & Julián Alejandro Vega-Forero & Oscar Danilo Montoya, 2023. "Application of the Gradient-Based Metaheuristic Optimizerto Solve the Optimal Conductor Selection Problemin Three-Phase Asymmetric Distribution Networks," Energies, MDPI, vol. 16(2), pages 1-29, January.
    19. Xiang, Yue & Dai, Jiakun & Xue, Ping & Liu, Junyong, 2023. "Autonomous topology planning for distribution network expansion: A learning-based decoupled optimization method," Applied Energy, Elsevier, vol. 348(C).
    20. Mohammad Jooshaki & Ali Abbaspour & Mahmud Fotuhi-Firuzabad & Moein Moeini-Aghtaie & Matti Lehtonen, 2019. "Multistage Expansion Co-Planning of Integrated Natural Gas and Electricity Distribution Systems," Energies, MDPI, vol. 12(6), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6387-:d:903913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.