IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4803-d1174587.html
   My bibliography  Save this article

State-Space Load Flow Calculation of an Energy System with Sector-Coupling Technologies

Author

Listed:
  • Sebastian Bottler

    (Institute of High Voltage Technology, Energy System & Asset Diagnostics (IHEA), Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany)

  • Christian Weindl

    (Institute of High Voltage Technology, Energy System & Asset Diagnostics (IHEA), Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany)

Abstract

This paper addresses the sector-coupling principle, highlights each associated sector’s technologies and showcases their future development, according to the German grid development plan. Furthermore, the research project ESM-Regio, and its goals in terms of simulatively analyzing the sector-coupling approach for a specific model region and future scenarios, is introduced. In this context, the key methods for modeling the electricity sector’s loading behavior are showcased. Most importantly, the state-space load flow calculation, load modeling (including the integration of the power demands of the sector-coupling technologies) and an assessment of grid operating equipment, based on thermal aging models, are described.

Suggested Citation

  • Sebastian Bottler & Christian Weindl, 2023. "State-Space Load Flow Calculation of an Energy System with Sector-Coupling Technologies," Energies, MDPI, vol. 16(12), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4803-:d:1174587
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4803/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4803/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joseph P. Varghese & Kumaravel Sundaramoorthy & Ashok Sankaran, 2023. "Development and Validation of a Load Flow Based Scheme for Optimum Placing and Quantifying of Distributed Generation for Alleviation of Congestion in Interconnected Power Systems," Energies, MDPI, vol. 16(6), pages 1-24, March.
    2. Benedetto-Giuseppe Risi & Francesco Riganti-Fulginei & Antonino Laudani, 2022. "Modern Techniques for the Optimal Power Flow Problem: State of the Art," Energies, MDPI, vol. 15(17), pages 1-20, September.
    3. Sai Sudharshan Ravi & Muhammad Aziz, 2022. "Utilization of Electric Vehicles for Vehicle-to-Grid Services: Progress and Perspectives," Energies, MDPI, vol. 15(2), pages 1-27, January.
    4. Cristina Coutinho de Oliveira & Alfredo Bonini Neto & Dilson Amancio Alves & Carlos Roberto Minussi & Carlos Alberto Castro, 2023. "Alternative Current Injection Newton and Fast Decoupled Power Flow," Energies, MDPI, vol. 16(6), pages 1-17, March.
    5. Mwasilu, Francis & Justo, Jackson John & Kim, Eun-Kyung & Do, Ton Duc & Jung, Jin-Woo, 2014. "Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 501-516.
    6. Katrin Schmietendorf & Joachim Peinke & Oliver Kamps, 2017. "The impact of turbulent renewable energy production on power grid stability and quality," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(11), pages 1-6, November.
    7. Filip Mišurović & Saša Mujović, 2022. "Numerical Probabilistic Load Flow Analysis in Modern Power Systems with Intermittent Energy Sources," Energies, MDPI, vol. 15(6), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehrdad Tarafdar-Hagh & Kamran Taghizad-Tavana & Mohsen Ghanbari-Ghalehjoughi & Sayyad Nojavan & Parisa Jafari & Amin Mohammadpour Shotorbani, 2023. "Optimizing Electric Vehicle Operations for a Smart Environment: A Comprehensive Review," Energies, MDPI, vol. 16(11), pages 1-21, May.
    2. Yu, Hang & Niu, Songyan & Shang, Yitong & Shao, Ziyun & Jia, Youwei & Jian, Linni, 2022. "Electric vehicles integration and vehicle-to-grid operation in active distribution grids: A comprehensive review on power architectures, grid connection standards and typical applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Md. Rayid Hasan Mojumder & Fahmida Ahmed Antara & Md. Hasanuzzaman & Basem Alamri & Mohammad Alsharef, 2022. "Electric Vehicle-to-Grid (V2G) Technologies: Impact on the Power Grid and Battery," Sustainability, MDPI, vol. 14(21), pages 1-53, October.
    4. Bogdanov, Dmitrii & Breyer, Christian, 2024. "Role of smart charging of electric vehicles and vehicle-to-grid in integrated renewables-based energy systems on country level," Energy, Elsevier, vol. 301(C).
    5. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Chaouachi, Aymen & Bompard, Ettore & Fulli, Gianluca & Masera, Marcelo & De Gennaro, Michele & Paffumi, Elena, 2016. "Assessment framework for EV and PV synergies in emerging distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 719-728.
    7. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    8. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    9. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    10. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    11. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    12. Nagel, Niels Oliver & Jåstad, Eirik Ogner & Martinsen, Thomas, 2024. "The grid benefits of vehicle-to-grid in Norway and Denmark: An analysis of home- and public parking potentials," Energy, Elsevier, vol. 293(C).
    13. Elsinga, Boudewijn & van Sark, Wilfried G.J.H.M., 2017. "Short-term peer-to-peer solar forecasting in a network of photovoltaic systems," Applied Energy, Elsevier, vol. 206(C), pages 1464-1483.
    14. Shi, Ruifeng & Li, Shaopeng & Zhang, Penghui & Lee, Kwang Y., 2020. "Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization," Renewable Energy, Elsevier, vol. 153(C), pages 1067-1080.
    15. Leippi, Andre & Fleschutz, Markus & Davis, Kevin & Klingler, Anna-Lena & Murphy, Michael D., 2024. "Optimizing electric vehicle fleet integration in industrial demand response: Maximizing vehicle-to-grid benefits while compensating vehicle owners for battery degradation," Applied Energy, Elsevier, vol. 374(C).
    16. Rahman, Imran & Vasant, Pandian M. & Singh, Balbir Singh Mahinder & Abdullah-Al-Wadud, M. & Adnan, Nadia, 2016. "Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1039-1047.
    17. Shi You & Junjie Hu & Charalampos Ziras, 2016. "An Overview of Modeling Approaches Applied to Aggregation-Based Fleet Management and Integration of Plug-in Electric Vehicles †," Energies, MDPI, vol. 9(11), pages 1-18, November.
    18. Riccardo Iacobucci & Benjamin McLellan & Tetsuo Tezuka, 2018. "The Synergies of Shared Autonomous Electric Vehicles with Renewable Energy in a Virtual Power Plant and Microgrid," Energies, MDPI, vol. 11(8), pages 1-20, August.
    19. Pla, Benjamín & Bares, Pau & Aronis, André Nakaema & Anuratha, Sanjith, 2024. "Leveraging battery electric vehicle energy storage potential for home energy saving by model predictive control with backward induction," Applied Energy, Elsevier, vol. 372(C).
    20. Asaad, Mohammad & Ahmad, Furkan & Alam, Mohammad Saad & Sarfraz, Mohammad, 2021. "Smart grid and Indian experience: A review," Resources Policy, Elsevier, vol. 74(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4803-:d:1174587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.